public static int compare()

in java/dfp/src/main/java/com/epam/deltix/dfp/JavaImplCmp.java [24:146]


    public static int compare(final long /*BID_UINT64*/ x, final long /*BID_UINT64*/ y) {
        // SIMPLE (CASE2)
        // if all the bits are the same, these numbers are equivalent.
        if (x == y) {
            return 0;
        }
        final boolean x_mask_sign = (x & MASK_SIGN) == MASK_SIGN;
        final boolean y_mask_sign = (y & MASK_SIGN) == MASK_SIGN;
        final boolean xIsSpecial = (x & MASK_STEERING_BITS) == MASK_STEERING_BITS;
        final boolean yIsSpecial = (y & MASK_STEERING_BITS) == MASK_STEERING_BITS;
        if (xIsSpecial || yIsSpecial) {
            // NaN (CASE1)
            // if either number is NAN, the comparison is unordered,
            // rather than equal : return 0
            final boolean xIsNaN = (x & MASK_NAN) == MASK_NAN;
            final boolean yIsNaN = (y & MASK_NAN) == MASK_NAN;
            if (xIsNaN || yIsNaN) {
                return (xIsNaN ? 1 : 0) - (yIsNaN ? 1 : 0);
            }
            // INFINITY (CASE3)
            final boolean xIsInf = (x & MASK_INF) == MASK_INF;
            final boolean yIsInf = (y & MASK_INF) == MASK_INF;
            if (xIsInf) {
                if (x_mask_sign) {
                    // x is -inf, so it is less than y unless y is -inf
                    return yIsInf && y_mask_sign ? 0 : -1;
                }
                // x is pos infinity, it is greater, unless y is positive
                // infinity => return y!=pos_infinity
                return yIsInf && !y_mask_sign ? 0 : 1;
            } else if (yIsInf) {
                // x is finite, so if y is positive infinity, then x is less
                //                 if y is negative infinity, then x is greater
                return y_mask_sign ? 1 : -1;
            }
        }
        final int exp_x, exp_y;
        final long /*BID_UINT64*/ sig_x, sig_y;
        final boolean x_is_zero, y_is_zero;
        // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
        if (xIsSpecial) {
            exp_x = (int) ((x & MASK_BINARY_EXPONENT2) >>> 51);
            sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
            x_is_zero = sig_x > 9999999999999999L;
        } else {
            exp_x = (int) ((x & MASK_BINARY_EXPONENT1) >>> 53);
            sig_x = x & MASK_BINARY_SIG1;
            x_is_zero = sig_x == 0;
        }
        // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
        if (yIsSpecial) {
            exp_y = (int) ((y & MASK_BINARY_EXPONENT2) >>> 51);
            sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
            y_is_zero = sig_y > 9999999999999999L;
        } else {
            exp_y = (int) ((y & MASK_BINARY_EXPONENT1) >>> 53);
            sig_y = y & MASK_BINARY_SIG1;
            y_is_zero = sig_y == 0;
        }
        // ZERO (CASE4)
        // some properties:
        // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
        // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
        //  therefore ignore the exponent field
        // (Any non-canonical # is considered 0)
        if (x_is_zero || y_is_zero) {
            if (x_is_zero && y_is_zero) {
                // if both numbers are zero, they are equal
                return 0;
            } else if (x_is_zero) {
                // if x is zero, it is greater if Y is negative
                return y_mask_sign ? 1 : -1;
            } else {
                // if y is zero, X is greater if it is positive
                return x_mask_sign ? -1 : 1;
            }
        }
        // OPPOSITE SIGN (CASE5)
        // now, if the sign bits differ, x is greater if y is negative
        if (x_mask_sign ^ y_mask_sign) {
            return y_mask_sign ? 1 : -1;
        }
        // REDUNDANT REPRESENTATIONS (CASE6)
        // if both components are either bigger or smaller,
        // it is clear what needs to be done
        final int exp_diff = exp_x - exp_y;
        final long sig_diff = sig_x - sig_y;
        // if |exp_x - exp_y| < 15, it comes down to the compensated significand
        if (exp_diff > 0) {
            if (exp_diff > 15 || sig_diff > 0) {
                return x_mask_sign ? -1 : 1;
            }
            // otherwise adjust the x significand upwards
            // __mul_64x64_to_128MACH (sig_n_prime, sig_x, bid_mult_factor[exp_x - exp_y]); // @AD: Note: The __mul_64x64_to_128MACH macro is the same as __mul_64x64_to_128
            final long __CY = bid_mult_factor[exp_diff];
            final long sig_n_prime_w1 = Mul64Impl.unsignedMultiplyHigh(sig_x, __CY);
            final long sig_n_prime_w0 = sig_x * __CY;
            // if values are equal
            if (sig_n_prime_w1 == 0 && sig_n_prime_w0 == sig_y) {
                return 0;
            }
            // if positive, return whichever significand abs is smaller
            // (converse if negative)
            return (sig_n_prime_w1 == 0 && UnsignedLong.isLess(sig_n_prime_w0, sig_y)) ^ !x_mask_sign ? 1 : -1; // @AD: TODO: Check this case carefully
        }
        if (exp_diff < -15 || sig_diff < 0) {
            return x_mask_sign ? 1 : -1;
        } else if (exp_diff == 0 && sig_diff > 0) {
            return x_mask_sign ? -1 : 1;
        }
        // adjust the y significand upwards
        // __mul_64x64_to_128MACH (sig_n_prime, sig_y, bid_mult_factor[exp_y - exp_x]); // @AD: Note: The __mul_64x64_to_128MACH macro is the same as __mul_64x64_to_128
        final long __CY = bid_mult_factor[-exp_diff];
        final long sig_n_prime_w1 = Mul64Impl.unsignedMultiplyHigh(sig_y, __CY);
        final long sig_n_prime_w0 = sig_y * __CY;
        // if values are equal
        if (sig_n_prime_w1 == 0 && sig_n_prime_w0 == sig_x) {
            return 0;
        }
        // if positive, return whichever significand abs is smaller
        // (converse if negative)
        return (sig_n_prime_w1 != 0 || UnsignedLong.isLess(sig_x, sig_n_prime_w0)) ^ !x_mask_sign ? 1 : -1;  // @AD: TODO: Check this case carefully
    }