in TestApplications/Web/js/lib/components/d3-3.4.13/lib/science/science.stats.js [331:428]
function hcluster(vectors) {
var n = vectors.length,
dMin = [],
cSize = [],
distMatrix = [],
clusters = [],
c1,
c2,
c1Cluster,
c2Cluster,
p,
root,
i,
j;
// Initialise distance matrix and vector of closest clusters.
i = -1; while (++i < n) {
dMin[i] = 0;
distMatrix[i] = [];
j = -1; while (++j < n) {
distMatrix[i][j] = i === j ? Infinity : distance(vectors[i] , vectors[j]);
if (distMatrix[i][dMin[i]] > distMatrix[i][j]) dMin[i] = j;
}
}
// create leaves of the tree
i = -1; while (++i < n) {
clusters[i] = [];
clusters[i][0] = {
left: null,
right: null,
dist: 0,
centroid: vectors[i],
size: 1,
depth: 0
};
cSize[i] = 1;
}
// Main loop
for (p = 0; p < n-1; p++) {
// find the closest pair of clusters
c1 = 0;
for (i = 0; i < n; i++) {
if (distMatrix[i][dMin[i]] < distMatrix[c1][dMin[c1]]) c1 = i;
}
c2 = dMin[c1];
// create node to store cluster info
c1Cluster = clusters[c1][0];
c2Cluster = clusters[c2][0];
newCluster = {
left: c1Cluster,
right: c2Cluster,
dist: distMatrix[c1][c2],
centroid: calculateCentroid(c1Cluster.size, c1Cluster.centroid,
c2Cluster.size, c2Cluster.centroid),
size: c1Cluster.size + c2Cluster.size,
depth: 1 + Math.max(c1Cluster.depth, c2Cluster.depth)
};
clusters[c1].splice(0, 0, newCluster);
cSize[c1] += cSize[c2];
// overwrite row c1 with respect to the linkage type
for (j = 0; j < n; j++) {
switch (linkage) {
case "single":
if (distMatrix[c1][j] > distMatrix[c2][j])
distMatrix[j][c1] = distMatrix[c1][j] = distMatrix[c2][j];
break;
case "complete":
if (distMatrix[c1][j] < distMatrix[c2][j])
distMatrix[j][c1] = distMatrix[c1][j] = distMatrix[c2][j];
break;
case "average":
distMatrix[j][c1] = distMatrix[c1][j] = (cSize[c1] * distMatrix[c1][j] + cSize[c2] * distMatrix[c2][j]) / (cSize[c1] + cSize[j]);
break;
}
}
distMatrix[c1][c1] = Infinity;
// infinity out old row c2 and column c2
for (i = 0; i < n; i++)
distMatrix[i][c2] = distMatrix[c2][i] = Infinity;
// update dmin and replace ones that previous pointed to c2 to point to c1
for (j = 0; j < n; j++) {
if (dMin[j] == c2) dMin[j] = c1;
if (distMatrix[c1][j] < distMatrix[c1][dMin[c1]]) dMin[c1] = j;
}
// keep track of the last added cluster
root = newCluster;
}
return root;
}