def load_predictions()

in databricks/lib/spark_helper/predictions.py [0:0]


    def load_predictions(self, job_id: int) -> List[Prediction]:

        prediction_file_paths = self.storage_service.list_files(
            Path(f"{self.VOLUME_NAME}/{job_id}")
        )

        predictions = []
        for file_path in prediction_file_paths:
            prediction = json.loads(self.storage_service.read_text(file_path))
            predictions.append(
                Prediction(
                    job_id=prediction["job_id"],
                    file_id=prediction["file_id"],
                    ground_truth_revision_id=prediction[
                        "ground_truth_revision_id"
                    ],
                    model_params=ModelParams(
                        model_name=prediction["model_params"]["model_name"],
                        model_version=prediction["model_params"][
                            "model_version"
                        ],
                        temperature=prediction["model_params"]["temperature"],
                        prompt=prediction["model_params"]["prompt"],
                        json_schema=(
                            json.loads(
                                prediction["model_params"]["json_schema"]
                            )
                            if prediction["model_params"]["json_schema"]
                            else None
                        ),
                    ),
                    prediction_result=prediction["prediction_result"],
                    created_date=datetime.fromisoformat(
                        prediction["created_date"]
                    ),
                )
            )

        return predictions