gpu-workload/triton/loadgenerator.yaml (147 lines of code) (raw):

apiVersion: v1 kind: ConfigMap metadata: name: loadgenerator-files data: locustfile.py: | # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from locust import FastHttpUser, task, between from locust import LoadTestShape import json import os class ProfileLoad(LoadTestShape): ''' This load profile starts at 0 and steps up by step_users increments every tick, up to target_users. After reaching target_user level, load will stay at target_user level until time_limit is reached. ''' target_users = 1000 step_users = 50 # ramp users each step time_limit = 3600 # seconds def tick(self): num_steps = self.target_users / self.step_users run_time = round(self.get_run_time()) if run_time < self.time_limit: if num_steps < run_time: user_count = num_steps * self.step_users else: user_count = self.target_users return (user_count, self.step_users) else: return None class TritonUser(FastHttpUser): wait_time = between(0.2, 0.2) @task() def bert(self): with self.client.post(self.infer_url, catch_response=True, data=json.dumps(self.data) ) as response: if response.status_code == 200: response.success() else: response.failure(f'{response.status_code} {response.reason}') def on_start(self): with open('request.json') as f: self.data = json.load(f) model_name = os.getenv('MODEL_NAME', 'bert_tf') self.infer_url = f'{self.environment.host}/v2/models/{model_name}/infer' request.json: | { "inputs": [{ "name": "input_word_ids", "shape": [1, 128], "datatype": "INT32", "parameters": {}, "data": [101, 2054, 2003, 23435, 5339, 1029, 102, 23435, 5339, 2003, 1037, 2152, 2836, 2784, 4083, 28937, 4132, 2008, 18058, 2659, 2397, 9407, 1998, 2152, 2083, 18780, 2005, 18726, 2107, 2004, 16755, 2545, 1010, 4613, 1998, 3746, 1013, 2678, 2006, 1050, 17258, 2401, 14246, 2271, 1012, 2009, 2950, 11968, 8043, 2015, 2000, 12324, 4275, 1010, 1998, 13354, 7076, 2000, 2490, 3117, 23092, 1998, 9014, 2077, 11243, 20600, 2015, 2005, 28937, 1012, 2651, 1050, 17258, 2401, 2003, 2330, 1011, 14768, 6129, 11968, 8043, 2015, 1998, 13354, 7076, 1999, 23435, 5339, 2061, 2008, 1996, 2784, 4083, 2451, 2064, 7661, 4697, 1998, 7949, 2122, 6177, 2000, 2202, 5056, 1997, 3928, 23435, 5339, 20600, 2015, 2005, 2115, 18726, 1012, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] }, { "name": "input_mask", "shape": [1, 128], "datatype": "INT32", "parameters": {}, "data": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] }, { "name": "input_type_ids", "shape": [1, 128], "datatype": "INT32", "parameters": {}, "data": [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] }], "outputs": [{ "name": "bert_encoder", "parameters": { "binary_data": false } }] } --- apiVersion: v1 kind: ConfigMap metadata: name: loadgenerator-env data: LOCUST_HOST: http://TRITON_IP_ADDRESS LOCUST_USERS: "100" LOCUST_SPAWN_RATE: "5" LOCUST_LOGLEVEL: error LOCUST_WEB_PORT: "8080" MODEL_NAME: "bert_tf" --- apiVersion: apps/v1 kind: Deployment metadata: name: loadgenerator labels: app: loadgenerator spec: replicas: 1 selector: matchLabels: app: loadgenerator template: metadata: labels: app: loadgenerator spec: volumes: - name: locustfile configMap: name: loadgenerator-files containers: - name: loadgenerator image: locustio/locust command: ["locust", "--autostart"] envFrom: - configMapRef: name: loadgenerator-env volumeMounts: - mountPath: /home/locust name: locustfile resources: requests: memory: "512Mi" cpu: "250m" ephemeral-storage: "1Gi" limits: memory: "512Mi" cpu: "250m" ephemeral-storage: "1Gi" readinessProbe: httpGet: scheme: HTTP path: / port: 8080 ports: - containerPort: 8080 --- apiVersion: v1 kind: Service metadata: name: loadgenerator spec: type: ClusterIP selector: app: loadgenerator ports: - name: http port: 8080 targetPort: 8080