gpu-workload/triton/loadgenerator.yaml (147 lines of code) (raw):
apiVersion: v1
kind: ConfigMap
metadata:
name: loadgenerator-files
data:
locustfile.py: |
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from locust import FastHttpUser, task, between
from locust import LoadTestShape
import json
import os
class ProfileLoad(LoadTestShape):
'''
This load profile starts at 0 and steps up by step_users
increments every tick, up to target_users. After reaching
target_user level, load will stay at target_user level
until time_limit is reached.
'''
target_users = 1000
step_users = 50 # ramp users each step
time_limit = 3600 # seconds
def tick(self):
num_steps = self.target_users / self.step_users
run_time = round(self.get_run_time())
if run_time < self.time_limit:
if num_steps < run_time:
user_count = num_steps * self.step_users
else:
user_count = self.target_users
return (user_count, self.step_users)
else:
return None
class TritonUser(FastHttpUser):
wait_time = between(0.2, 0.2)
@task()
def bert(self):
with self.client.post(self.infer_url,
catch_response=True, data=json.dumps(self.data)
) as response:
if response.status_code == 200:
response.success()
else:
response.failure(f'{response.status_code} {response.reason}')
def on_start(self):
with open('request.json') as f:
self.data = json.load(f)
model_name = os.getenv('MODEL_NAME', 'bert_tf')
self.infer_url = f'{self.environment.host}/v2/models/{model_name}/infer'
request.json: |
{
"inputs": [{
"name": "input_word_ids",
"shape": [1, 128],
"datatype": "INT32",
"parameters": {},
"data": [101, 2054, 2003, 23435, 5339, 1029, 102, 23435, 5339, 2003, 1037, 2152, 2836, 2784, 4083, 28937, 4132, 2008, 18058, 2659, 2397, 9407, 1998, 2152, 2083, 18780, 2005, 18726, 2107, 2004, 16755, 2545, 1010, 4613, 1998, 3746, 1013, 2678, 2006, 1050, 17258, 2401, 14246, 2271, 1012, 2009, 2950, 11968, 8043, 2015, 2000, 12324, 4275, 1010, 1998, 13354, 7076, 2000, 2490, 3117, 23092, 1998, 9014, 2077, 11243, 20600, 2015, 2005, 28937, 1012, 2651, 1050, 17258, 2401, 2003, 2330, 1011, 14768, 6129, 11968, 8043, 2015, 1998, 13354, 7076, 1999, 23435, 5339, 2061, 2008, 1996, 2784, 4083, 2451, 2064, 7661, 4697, 1998, 7949, 2122, 6177, 2000, 2202, 5056, 1997, 3928, 23435, 5339, 20600, 2015, 2005, 2115, 18726, 1012, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
}, {
"name": "input_mask",
"shape": [1, 128],
"datatype": "INT32",
"parameters": {},
"data": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
}, {
"name": "input_type_ids",
"shape": [1, 128],
"datatype": "INT32",
"parameters": {},
"data": [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
}],
"outputs": [{
"name": "bert_encoder",
"parameters": {
"binary_data": false
}
}]
}
---
apiVersion: v1
kind: ConfigMap
metadata:
name: loadgenerator-env
data:
LOCUST_HOST: http://TRITON_IP_ADDRESS
LOCUST_USERS: "100"
LOCUST_SPAWN_RATE: "5"
LOCUST_LOGLEVEL: error
LOCUST_WEB_PORT: "8080"
MODEL_NAME: "bert_tf"
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: loadgenerator
labels:
app: loadgenerator
spec:
replicas: 1
selector:
matchLabels:
app: loadgenerator
template:
metadata:
labels:
app: loadgenerator
spec:
volumes:
- name: locustfile
configMap:
name: loadgenerator-files
containers:
- name: loadgenerator
image: locustio/locust
command: ["locust", "--autostart"]
envFrom:
- configMapRef:
name: loadgenerator-env
volumeMounts:
- mountPath: /home/locust
name: locustfile
resources:
requests:
memory: "512Mi"
cpu: "250m"
ephemeral-storage: "1Gi"
limits:
memory: "512Mi"
cpu: "250m"
ephemeral-storage: "1Gi"
readinessProbe:
httpGet:
scheme: HTTP
path: /
port: 8080
ports:
- containerPort: 8080
---
apiVersion: v1
kind: Service
metadata:
name: loadgenerator
spec:
type: ClusterIP
selector:
app: loadgenerator
ports:
- name: http
port: 8080
targetPort: 8080