ai-ml/gke-ray/rayserve/stable-diffusion/stable_diffusion.py (44 lines of code) (raw):
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# NOTE: this file was inspired from https://github.com/ray-project/serve_config_examples/blob/master/stable_diffusion/stable_diffusion.py
from io import BytesIO
from fastapi import FastAPI
from fastapi.responses import Response
import torch
from ray import serve
from ray.serve.handle import DeploymentHandle
app = FastAPI()
@serve.deployment(num_replicas=1)
@serve.ingress(app)
class APIIngress:
def __init__(self, diffusion_model_handle: DeploymentHandle) -> None:
self.handle = diffusion_model_handle
@app.get(
"/imagine",
responses={200: {"content": {"image/png": {}}}},
response_class=Response,
)
async def generate(self, prompt: str, img_size: int = 512):
assert len(prompt), "prompt parameter cannot be empty"
image = await self.handle.generate.remote(prompt, img_size=img_size)
file_stream = BytesIO()
image.save(file_stream, "PNG")
return Response(content=file_stream.getvalue(), media_type="image/png")
@serve.deployment(
ray_actor_options={"num_gpus": 1},
num_replicas=1,
)
class StableDiffusionV2:
def __init__(self):
from diffusers import EulerDiscreteScheduler, StableDiffusionPipeline
model_id = "stabilityai/stable-diffusion-2"
scheduler = EulerDiscreteScheduler.from_pretrained(
model_id, subfolder="scheduler"
)
self.pipe = StableDiffusionPipeline.from_pretrained(
model_id, scheduler=scheduler, revision="fp16", torch_dtype=torch.float16
)
self.pipe = self.pipe.to("cuda")
def generate(self, prompt: str, img_size: int = 512):
assert len(prompt), "prompt parameter cannot be empty"
with torch.autocast("cuda"):
image = self.pipe(prompt, height=img_size, width=img_size).images[0]
return image
entrypoint = APIIngress.bind(StableDiffusionV2.bind())