ai-ml/gke-ray/raytrain/pytorch-mnist/train.py (104 lines of code) (raw):

# Copyright 2024 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # NOTE: this file was inspired from https://github.com/ray-project/kuberay/blob/master/ray-operator/config/samples/pytorch-mnist/ray_train_pytorch_mnist.py import os from typing import Dict from filelock import FileLock from tqdm import tqdm import torch from torch import nn from torch.utils.data import DataLoader from torchvision import datasets, transforms from torchvision.transforms import Normalize, ToTensor import ray.train from ray.train import ScalingConfig from ray.train.torch import TorchTrainer def get_dataloaders(batch_size): # Transform to normalize the input images transform = transforms.Compose([ToTensor(), Normalize((0.5,), (0.5,))]) with FileLock(os.path.expanduser("~/data.lock")): # Download training data from open datasets training_data = datasets.FashionMNIST( root="~/data", train=True, download=True, transform=transform, ) # Download test data from open datasets test_data = datasets.FashionMNIST( root="~/data", train=False, download=True, transform=transform, ) # Create data loaders train_dataloader = DataLoader(training_data, batch_size=batch_size, shuffle=True) test_dataloader = DataLoader(test_data, batch_size=batch_size) return train_dataloader, test_dataloader # Model Definition class NeuralNetwork(nn.Module): def __init__(self): super(NeuralNetwork, self).__init__() self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( nn.Linear(28 * 28, 512), nn.ReLU(), nn.Dropout(0.25), nn.Linear(512, 512), nn.ReLU(), nn.Dropout(0.25), nn.Linear(512, 10), nn.ReLU(), ) def forward(self, x): x = self.flatten(x) logits = self.linear_relu_stack(x) return logits def train_func_per_worker(config: Dict): lr = config["lr"] epochs = config["epochs"] batch_size = config["batch_size_per_worker"] # Get dataloaders inside the worker training function train_dataloader, test_dataloader = get_dataloaders(batch_size=batch_size) # [1] Prepare Dataloader for distributed training # Shard the datasets among workers and move batches to the correct device # ======================================================================= train_dataloader = ray.train.torch.prepare_data_loader(train_dataloader) test_dataloader = ray.train.torch.prepare_data_loader(test_dataloader) model = NeuralNetwork() # [2] Prepare and wrap your model with DistributedDataParallel # Move the model to the correct GPU/CPU device # ============================================================ model = ray.train.torch.prepare_model(model) loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9) # Model training loop for epoch in range(epochs): if ray.train.get_context().get_world_size() > 1: # Required for the distributed sampler to shuffle properly across epochs. train_dataloader.sampler.set_epoch(epoch) model.train() for X, y in tqdm(train_dataloader, desc=f"Train Epoch {epoch}"): pred = model(X) loss = loss_fn(pred, y) optimizer.zero_grad() loss.backward() optimizer.step() model.eval() test_loss, num_correct, num_total = 0, 0, 0 with torch.no_grad(): for X, y in tqdm(test_dataloader, desc=f"Test Epoch {epoch}"): pred = model(X) loss = loss_fn(pred, y) test_loss += loss.item() num_total += y.shape[0] num_correct += (pred.argmax(1) == y).sum().item() test_loss /= len(test_dataloader) accuracy = num_correct / num_total # [3] Report metrics to Ray Train # =============================== ray.train.report(metrics={"loss": test_loss, "accuracy": accuracy}) def train_fashion_mnist(num_workers=4, cpus_per_worker=2, use_gpu=False): global_batch_size = 32 train_config = { "lr": 1e-3, "epochs": 10, "batch_size_per_worker": global_batch_size // num_workers, } # Configure computation resources scaling_config = ScalingConfig( num_workers=num_workers, use_gpu=use_gpu, resources_per_worker={"CPU": cpus_per_worker} ) # Initialize a Ray TorchTrainer trainer = TorchTrainer( train_loop_per_worker=train_func_per_worker, train_loop_config=train_config, scaling_config=scaling_config, ) # [4] Start distributed training # Run `train_func_per_worker` on all workers # ============================================= result = trainer.fit() print(f"Training result: {result}") if __name__ == "__main__": num_workers = int(os.getenv("NUM_WORKERS", "4")) cpus_per_worker = int(os.getenv("CPUS_PER_WORKER", "2")) train_fashion_mnist(num_workers=num_workers, cpus_per_worker=cpus_per_worker)