databases/elasticsearch/docker/embed-docs/embedding-job.py (32 lines of code) (raw):
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from langchain_google_vertexai import VertexAIEmbeddings
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from elasticsearch import Elasticsearch
from langchain_community.vectorstores.elasticsearch import ElasticsearchStore
from google.cloud import storage
import os
bucketname = os.getenv("BUCKET_NAME")
filename = os.getenv("FILE_NAME")
storage_client = storage.Client()
bucket = storage_client.bucket(bucketname)
blob = bucket.blob(filename)
blob.download_to_filename("/documents/" + filename)
loader = PyPDFLoader("/documents/" + filename)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = loader.load_and_split(text_splitter)
embeddings = VertexAIEmbeddings("text-embedding-005")
client = Elasticsearch(
[os.getenv("ES_URL")],
verify_certs=False,
ssl_show_warn=False,
basic_auth=("elastic", os.getenv("PASSWORD"))
)
db = ElasticsearchStore.from_documents(
documents,
embeddings,
es_connection=client,
index_name=os.getenv("INDEX_NAME")
)
db.client.indices.refresh(index=os.getenv("INDEX_NAME"))
print(filename + " was successfully embedded")
print(f"# of vectors = {len(documents)}")