databases/qdrant/docker/embed-docs/embedding-job.py (26 lines of code) (raw):

# Copyright 2024 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from langchain_google_vertexai import VertexAIEmbeddings from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Qdrant from google.cloud import storage import os # [START gke_databases_qdrant_docker_embed_docs_retrieval] bucketname = os.getenv("BUCKET_NAME") filename = os.getenv("FILE_NAME") storage_client = storage.Client() bucket = storage_client.bucket(bucketname) blob = bucket.blob(filename) blob.download_to_filename("/documents/" + filename) # [END gke_databases_qdrant_docker_embed_docs_retrieval] # [START gke_databases_qdrant_docker_embed_docs_split] loader = PyPDFLoader("/documents/" + filename) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) documents = loader.load_and_split(text_splitter) # [END gke_databases_qdrant_docker_embed_docs_split] # [START gke_databases_qdrant_docker_embed_docs_embed] embeddings = VertexAIEmbeddings("text-embedding-005") # [END gke_databases_qdrant_docker_embed_docs_embed] # [START gke_databases_qdrant_docker_embed_docs_storage] qdrant = Qdrant.from_documents( documents, embeddings, collection_name=os.getenv("COLLECTION_NAME"), url=os.getenv("QDRANT_URL"), api_key=os.getenv("APIKEY"), shard_number=6, replication_factor=2 ) # [END gke_databases_qdrant_docker_embed_docs_storage] print(filename + " was successfully embedded") print(f"# of vectors = {len(documents)}")