databases/weaviate/docker/embed-docs/embedding-job.py (36 lines of code) (raw):

# Copyright 2024 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from langchain_google_vertexai import VertexAIEmbeddings from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter import weaviate from weaviate.connect import ConnectionParams from langchain_weaviate.vectorstores import WeaviateVectorStore from google.cloud import storage import os # [START gke_databases_weaviate_docker_embed_docs_retrieval] bucketname = os.getenv("BUCKET_NAME") filename = os.getenv("FILE_NAME") storage_client = storage.Client() bucket = storage_client.bucket(bucketname) blob = bucket.blob(filename) blob.download_to_filename("/documents/" + filename) # [END gke_databases_weaviate_docker_embed_docs_retrieval] # [START gke_databases_weaviate_docker_embed_docs_split] loader = PyPDFLoader("/documents/" + filename) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) documents = loader.load_and_split(text_splitter) # [END gke_databases_weaviate_docker_embed_docs_split] # [START gke_databases_weaviate_docker_embed_docs_embed] embeddings = VertexAIEmbeddings("text-embedding-005") # [END gke_databases_weaviate_docker_embed_docs_embed] # [START gke_databases_weaviate_docker_embed_docs_storage] auth_config = weaviate.auth.AuthApiKey(api_key=os.getenv("APIKEY")) client = weaviate.WeaviateClient( connection_params=ConnectionParams.from_params( http_host=os.getenv("WEAVIATE_ENDPOINT"), http_port="80", http_secure=False, grpc_host=os.getenv("WEAVIATE_GRPC_ENDPOINT"), grpc_port="50051", grpc_secure=False, ), auth_client_secret=auth_config ) client.connect() if not client.collections.exists("trainingdocs"): collection = client.collections.create(name="trainingdocs") db = WeaviateVectorStore.from_documents(documents, embeddings, client=client, index_name="trainingdocs") # [END gke_databases_weaviate_docker_embed_docs_storage] print(filename + " was successfully embedded") print(f"# of vectors = {len(documents)}")