void cv::Canny()

in modules/imgproc/src/canny.cpp [580:961]


void cv::Canny( InputArray _src, OutputArray _dst,
                double low_thresh, double high_thresh,
                int aperture_size, bool L2gradient )
{
    const int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
    const Size size = _src.size();

    CV_Assert( depth == CV_8U );
    _dst.create(size, CV_8U);

    if (!L2gradient && (aperture_size & CV_CANNY_L2_GRADIENT) == CV_CANNY_L2_GRADIENT)
    {
        // backward compatibility
        aperture_size &= ~CV_CANNY_L2_GRADIENT;
        L2gradient = true;
    }

    if ((aperture_size & 1) == 0 || (aperture_size != -1 && (aperture_size < 3 || aperture_size > 7)))
        CV_Error(CV_StsBadFlag, "Aperture size should be odd");

    if (low_thresh > high_thresh)
        std::swap(low_thresh, high_thresh);

    CV_OCL_RUN(_dst.isUMat() && (cn == 1 || cn == 3),
               ocl_Canny(_src, _dst, (float)low_thresh, (float)high_thresh, aperture_size, L2gradient, cn, size))

    Mat src = _src.getMat(), dst = _dst.getMat();

#ifdef HAVE_TEGRA_OPTIMIZATION
    if (tegra::useTegra() && tegra::canny(src, dst, low_thresh, high_thresh, aperture_size, L2gradient))
        return;
#endif

#ifdef USE_IPP_CANNY
    CV_IPP_CHECK()
    {
        if( aperture_size == 3 && !L2gradient && 1 == cn )
        {
            if (ippCanny(src, dst, (float)low_thresh, (float)high_thresh))
            {
                CV_IMPL_ADD(CV_IMPL_IPP);
                return;
            }
            setIppErrorStatus();
        }
    }
#endif

#ifdef HAVE_TBB

if (L2gradient)
{
    low_thresh = std::min(32767.0, low_thresh);
    high_thresh = std::min(32767.0, high_thresh);

    if (low_thresh > 0) low_thresh *= low_thresh;
    if (high_thresh > 0) high_thresh *= high_thresh;
}
int low = cvFloor(low_thresh);
int high = cvFloor(high_thresh);

ptrdiff_t mapstep = src.cols + 2;
AutoBuffer<uchar> buffer((src.cols+2)*(src.rows+2));

uchar* map = (uchar*)buffer;
memset(map, 1, mapstep);
memset(map + mapstep*(src.rows + 1), 1, mapstep);

int threadsNumber = tbb::task_scheduler_init::default_num_threads();
int grainSize = src.rows / threadsNumber;

// Make a fallback for pictures with too few rows.
uchar ksize2 = aperture_size / 2;
int minGrainSize = 1 + ksize2;
int maxGrainSize = src.rows - 2 - 2*ksize2;
if ( !( minGrainSize <= grainSize && grainSize <= maxGrainSize ) )
{
    threadsNumber = 1;
    grainSize = src.rows;
}

tbb::task_group g;

for (int i = 0; i < threadsNumber; ++i)
{
    if (i < threadsNumber - 1)
        g.run(tbbCanny(Range(i * grainSize, (i + 1) * grainSize), src, map, low, high, aperture_size, L2gradient));
    else
        g.run(tbbCanny(Range(i * grainSize, src.rows), src, map, low, high, aperture_size, L2gradient));
}

g.wait();

#define CANNY_PUSH_SERIAL(d)    *(d) = uchar(2), borderPeaks.push(d)

// now track the edges (hysteresis thresholding)
uchar* m;
while (borderPeaks.try_pop(m))
{
    if (!m[-1])         CANNY_PUSH_SERIAL(m - 1);
    if (!m[1])          CANNY_PUSH_SERIAL(m + 1);
    if (!m[-mapstep-1]) CANNY_PUSH_SERIAL(m - mapstep - 1);
    if (!m[-mapstep])   CANNY_PUSH_SERIAL(m - mapstep);
    if (!m[-mapstep+1]) CANNY_PUSH_SERIAL(m - mapstep + 1);
    if (!m[mapstep-1])  CANNY_PUSH_SERIAL(m + mapstep - 1);
    if (!m[mapstep])    CANNY_PUSH_SERIAL(m + mapstep);
    if (!m[mapstep+1])  CANNY_PUSH_SERIAL(m + mapstep + 1);
}

#else

    Mat dx(src.rows, src.cols, CV_16SC(cn));
    Mat dy(src.rows, src.cols, CV_16SC(cn));

    Sobel(src, dx, CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
    Sobel(src, dy, CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);

    if (L2gradient)
    {
        low_thresh = std::min(32767.0, low_thresh);
        high_thresh = std::min(32767.0, high_thresh);

        if (low_thresh > 0) low_thresh *= low_thresh;
        if (high_thresh > 0) high_thresh *= high_thresh;
    }
    int low = cvFloor(low_thresh);
    int high = cvFloor(high_thresh);

    ptrdiff_t mapstep = src.cols + 2;
    AutoBuffer<uchar> buffer((src.cols+2)*(src.rows+2) + cn * mapstep * 3 * sizeof(int));

    int* mag_buf[3];
    mag_buf[0] = (int*)(uchar*)buffer;
    mag_buf[1] = mag_buf[0] + mapstep*cn;
    mag_buf[2] = mag_buf[1] + mapstep*cn;
    memset(mag_buf[0], 0, /* cn* */mapstep*sizeof(int));

    uchar* map = (uchar*)(mag_buf[2] + mapstep*cn);
    memset(map, 1, mapstep);
    memset(map + mapstep*(src.rows + 1), 1, mapstep);

    int maxsize = std::max(1 << 10, src.cols * src.rows / 10);
    std::vector<uchar*> stack(maxsize);
    uchar **stack_top = &stack[0];
    uchar **stack_bottom = &stack[0];

    /* sector numbers
       (Top-Left Origin)

        1   2   3
         *  *  *
          * * *
        0*******0
          * * *
         *  *  *
        3   2   1
    */

    #define CANNY_PUSH(d)    *(d) = uchar(2), *stack_top++ = (d)
    #define CANNY_POP(d)     (d) = *--stack_top

#if CV_SSE2
    bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2);
#endif

    // calculate magnitude and angle of gradient, perform non-maxima suppression.
    // fill the map with one of the following values:
    //   0 - the pixel might belong to an edge
    //   1 - the pixel can not belong to an edge
    //   2 - the pixel does belong to an edge
    for (int i = 0; i <= src.rows; i++)
    {
        int* _norm = mag_buf[(i > 0) + 1] + 1;
        if (i < src.rows)
        {
            short* _dx = dx.ptr<short>(i);
            short* _dy = dy.ptr<short>(i);

            if (!L2gradient)
            {
                int j = 0, width = src.cols * cn;
#if CV_SSE2
                if (haveSSE2)
                {
                    __m128i v_zero = _mm_setzero_si128();
                    for ( ; j <= width - 8; j += 8)
                    {
                        __m128i v_dx = _mm_loadu_si128((const __m128i *)(_dx + j));
                        __m128i v_dy = _mm_loadu_si128((const __m128i *)(_dy + j));
                        v_dx = _mm_max_epi16(v_dx, _mm_sub_epi16(v_zero, v_dx));
                        v_dy = _mm_max_epi16(v_dy, _mm_sub_epi16(v_zero, v_dy));

                        __m128i v_norm = _mm_add_epi32(_mm_unpacklo_epi16(v_dx, v_zero), _mm_unpacklo_epi16(v_dy, v_zero));
                        _mm_storeu_si128((__m128i *)(_norm + j), v_norm);

                        v_norm = _mm_add_epi32(_mm_unpackhi_epi16(v_dx, v_zero), _mm_unpackhi_epi16(v_dy, v_zero));
                        _mm_storeu_si128((__m128i *)(_norm + j + 4), v_norm);
                    }
                }
#elif CV_NEON
                for ( ; j <= width - 8; j += 8)
                {
                    int16x8_t v_dx = vld1q_s16(_dx + j), v_dy = vld1q_s16(_dy + j);
                    vst1q_s32(_norm + j, vaddq_s32(vabsq_s32(vmovl_s16(vget_low_s16(v_dx))),
                                                   vabsq_s32(vmovl_s16(vget_low_s16(v_dy)))));
                    vst1q_s32(_norm + j + 4, vaddq_s32(vabsq_s32(vmovl_s16(vget_high_s16(v_dx))),
                                                       vabsq_s32(vmovl_s16(vget_high_s16(v_dy)))));
                }
#endif
                for ( ; j < width; ++j)
                    _norm[j] = std::abs(int(_dx[j])) + std::abs(int(_dy[j]));
            }
            else
            {
                int j = 0, width = src.cols * cn;
#if CV_SSE2
                if (haveSSE2)
                {
                    for ( ; j <= width - 8; j += 8)
                    {
                        __m128i v_dx = _mm_loadu_si128((const __m128i *)(_dx + j));
                        __m128i v_dy = _mm_loadu_si128((const __m128i *)(_dy + j));

                        __m128i v_dx_ml = _mm_mullo_epi16(v_dx, v_dx), v_dx_mh = _mm_mulhi_epi16(v_dx, v_dx);
                        __m128i v_dy_ml = _mm_mullo_epi16(v_dy, v_dy), v_dy_mh = _mm_mulhi_epi16(v_dy, v_dy);

                        __m128i v_norm = _mm_add_epi32(_mm_unpacklo_epi16(v_dx_ml, v_dx_mh), _mm_unpacklo_epi16(v_dy_ml, v_dy_mh));
                        _mm_storeu_si128((__m128i *)(_norm + j), v_norm);

                        v_norm = _mm_add_epi32(_mm_unpackhi_epi16(v_dx_ml, v_dx_mh), _mm_unpackhi_epi16(v_dy_ml, v_dy_mh));
                        _mm_storeu_si128((__m128i *)(_norm + j + 4), v_norm);
                    }
                }
#elif CV_NEON
                for ( ; j <= width - 8; j += 8)
                {
                    int16x8_t v_dx = vld1q_s16(_dx + j), v_dy = vld1q_s16(_dy + j);
                    int16x4_t v_dxp = vget_low_s16(v_dx), v_dyp = vget_low_s16(v_dy);
                    int32x4_t v_dst = vmlal_s16(vmull_s16(v_dxp, v_dxp), v_dyp, v_dyp);
                    vst1q_s32(_norm + j, v_dst);

                    v_dxp = vget_high_s16(v_dx), v_dyp = vget_high_s16(v_dy);
                    v_dst = vmlal_s16(vmull_s16(v_dxp, v_dxp), v_dyp, v_dyp);
                    vst1q_s32(_norm + j + 4, v_dst);
                }
#endif
                for ( ; j < width; ++j)
                    _norm[j] = int(_dx[j])*_dx[j] + int(_dy[j])*_dy[j];
            }

            if (cn > 1)
            {
                for(int j = 0, jn = 0; j < src.cols; ++j, jn += cn)
                {
                    int maxIdx = jn;
                    for(int k = 1; k < cn; ++k)
                        if(_norm[jn + k] > _norm[maxIdx]) maxIdx = jn + k;
                    _norm[j] = _norm[maxIdx];
                    _dx[j] = _dx[maxIdx];
                    _dy[j] = _dy[maxIdx];
                }
            }
            _norm[-1] = _norm[src.cols] = 0;
        }
        else
            memset(_norm-1, 0, /* cn* */mapstep*sizeof(int));

        // at the very beginning we do not have a complete ring
        // buffer of 3 magnitude rows for non-maxima suppression
        if (i == 0)
            continue;

        uchar* _map = map + mapstep*i + 1;
        _map[-1] = _map[src.cols] = 1;

        int* _mag = mag_buf[1] + 1; // take the central row
        ptrdiff_t magstep1 = mag_buf[2] - mag_buf[1];
        ptrdiff_t magstep2 = mag_buf[0] - mag_buf[1];

        const short* _x = dx.ptr<short>(i-1);
        const short* _y = dy.ptr<short>(i-1);

        if ((stack_top - stack_bottom) + src.cols > maxsize)
        {
            int sz = (int)(stack_top - stack_bottom);
            maxsize = std::max(maxsize * 3/2, sz + src.cols);
            stack.resize(maxsize);
            stack_bottom = &stack[0];
            stack_top = stack_bottom + sz;
        }

        int prev_flag = 0;
        for (int j = 0; j < src.cols; j++)
        {
            #define CANNY_SHIFT 15
            const int TG22 = (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5);

            int m = _mag[j];

            if (m > low)
            {
                int xs = _x[j];
                int ys = _y[j];
                int x = std::abs(xs);
                int y = std::abs(ys) << CANNY_SHIFT;

                int tg22x = x * TG22;

                if (y < tg22x)
                {
                    if (m > _mag[j-1] && m >= _mag[j+1]) goto __ocv_canny_push;
                }
                else
                {
                    int tg67x = tg22x + (x << (CANNY_SHIFT+1));
                    if (y > tg67x)
                    {
                        if (m > _mag[j+magstep2] && m >= _mag[j+magstep1]) goto __ocv_canny_push;
                    }
                    else
                    {
                        int s = (xs ^ ys) < 0 ? -1 : 1;
                        if (m > _mag[j+magstep2-s] && m > _mag[j+magstep1+s]) goto __ocv_canny_push;
                    }
                }
            }
            prev_flag = 0;
            _map[j] = uchar(1);
            continue;
__ocv_canny_push:
            if (!prev_flag && m > high && _map[j-mapstep] != 2)
            {
                CANNY_PUSH(_map + j);
                prev_flag = 1;
            }
            else
                _map[j] = 0;
        }

        // scroll the ring buffer
        _mag = mag_buf[0];
        mag_buf[0] = mag_buf[1];
        mag_buf[1] = mag_buf[2];
        mag_buf[2] = _mag;
    }

    // now track the edges (hysteresis thresholding)
    while (stack_top > stack_bottom)
    {
        uchar* m;
        if ((stack_top - stack_bottom) + 8 > maxsize)
        {
            int sz = (int)(stack_top - stack_bottom);
            maxsize = maxsize * 3/2;
            stack.resize(maxsize);
            stack_bottom = &stack[0];
            stack_top = stack_bottom + sz;
        }

        CANNY_POP(m);

        if (!m[-1])         CANNY_PUSH(m - 1);
        if (!m[1])          CANNY_PUSH(m + 1);
        if (!m[-mapstep-1]) CANNY_PUSH(m - mapstep - 1);
        if (!m[-mapstep])   CANNY_PUSH(m - mapstep);
        if (!m[-mapstep+1]) CANNY_PUSH(m - mapstep + 1);
        if (!m[mapstep-1])  CANNY_PUSH(m + mapstep - 1);
        if (!m[mapstep])    CANNY_PUSH(m + mapstep);
        if (!m[mapstep+1])  CANNY_PUSH(m + mapstep + 1);
    }

#endif

    // the final pass, form the final image
    const uchar* pmap = map + mapstep + 1;
    uchar* pdst = dst.ptr();
    for (int i = 0; i < src.rows; i++, pmap += mapstep, pdst += dst.step)
    {
        for (int j = 0; j < src.cols; j++)
            pdst[j] = (uchar)-(pmap[j] >> 1);
    }
}