void operator()

in modules/imgproc/src/canny.cpp [251:564]


    void operator()() const
    {
#if CV_SSE2
        bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2);
#endif

        const int type = src.type(), cn = CV_MAT_CN(type);

        Mat dx, dy;

        ptrdiff_t mapstep = src.cols + 2;

        // In sobel transform we calculate ksize2 extra lines for the first and last rows of each slice
        // because IPPDerivSobel expects only isolated ROIs, in contrast with the opencv version which
        // uses the pixels outside of the ROI to form a border.
        uchar ksize2 = aperture_size / 2;

        if (boundaries.start == 0 && boundaries.end == src.rows)
        {
            Mat tempdx(boundaries.end - boundaries.start + 2, src.cols, CV_16SC(cn));
            Mat tempdy(boundaries.end - boundaries.start + 2, src.cols, CV_16SC(cn));

            memset(tempdx.ptr<short>(0), 0, cn * src.cols*sizeof(short));
            memset(tempdy.ptr<short>(0), 0, cn * src.cols*sizeof(short));
            memset(tempdx.ptr<short>(tempdx.rows - 1), 0, cn * src.cols*sizeof(short));
            memset(tempdy.ptr<short>(tempdy.rows - 1), 0, cn * src.cols*sizeof(short));

            Sobel(src, tempdx.rowRange(1, tempdx.rows - 1), CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
            Sobel(src, tempdy.rowRange(1, tempdy.rows - 1), CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);

            dx = tempdx;
            dy = tempdy;
        }
        else if (boundaries.start == 0)
        {
            Mat tempdx(boundaries.end - boundaries.start + 2 + ksize2, src.cols, CV_16SC(cn));
            Mat tempdy(boundaries.end - boundaries.start + 2 + ksize2, src.cols, CV_16SC(cn));

            memset(tempdx.ptr<short>(0), 0, cn * src.cols*sizeof(short));
            memset(tempdy.ptr<short>(0), 0, cn * src.cols*sizeof(short));

            Sobel(src.rowRange(boundaries.start, boundaries.end + 1 + ksize2), tempdx.rowRange(1, tempdx.rows),
                    CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
            Sobel(src.rowRange(boundaries.start, boundaries.end + 1 + ksize2), tempdy.rowRange(1, tempdy.rows),
                    CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);

            dx = tempdx.rowRange(0, tempdx.rows - ksize2);
            dy = tempdy.rowRange(0, tempdy.rows - ksize2);
        }
        else if (boundaries.end == src.rows)
        {
            Mat tempdx(boundaries.end - boundaries.start + 2 + ksize2, src.cols, CV_16SC(cn));
            Mat tempdy(boundaries.end - boundaries.start + 2 + ksize2, src.cols, CV_16SC(cn));

            memset(tempdx.ptr<short>(tempdx.rows - 1), 0, cn * src.cols*sizeof(short));
            memset(tempdy.ptr<short>(tempdy.rows - 1), 0, cn * src.cols*sizeof(short));

            Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end), tempdx.rowRange(0, tempdx.rows - 1),
                    CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
            Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end), tempdy.rowRange(0, tempdy.rows - 1),
                    CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);

            dx = tempdx.rowRange(ksize2, tempdx.rows);
            dy = tempdy.rowRange(ksize2, tempdy.rows);
        }
        else
        {
            Mat tempdx(boundaries.end - boundaries.start + 2 + 2*ksize2, src.cols, CV_16SC(cn));
            Mat tempdy(boundaries.end - boundaries.start + 2 + 2*ksize2, src.cols, CV_16SC(cn));

            Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end + 1 + ksize2), tempdx,
                    CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
            Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end + 1 + ksize2), tempdy,
                    CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);

            dx = tempdx.rowRange(ksize2, tempdx.rows - ksize2);
            dy = tempdy.rowRange(ksize2, tempdy.rows - ksize2);
        }

        int maxsize = std::max(1 << 10, src.cols * (boundaries.end - boundaries.start) / 10);
        std::vector<uchar*> stack(maxsize);
        uchar **stack_top = &stack[0];
        uchar **stack_bottom = &stack[0];

        AutoBuffer<uchar> buffer(cn * mapstep * 3 * sizeof(int));

        int* mag_buf[3];
        mag_buf[0] = (int*)(uchar*)buffer;
        mag_buf[1] = mag_buf[0] + mapstep*cn;
        mag_buf[2] = mag_buf[1] + mapstep*cn;

        // calculate magnitude and angle of gradient, perform non-maxima suppression.
        // fill the map with one of the following values:
        //   0 - the pixel might belong to an edge
        //   1 - the pixel can not belong to an edge
        //   2 - the pixel does belong to an edge
        for (int i = boundaries.start - 1; i <= boundaries.end; i++)
        {
            int* _norm = mag_buf[(i > boundaries.start) - (i == boundaries.start - 1) + 1] + 1;

            short* _dx = dx.ptr<short>(i - boundaries.start + 1);
            short* _dy = dy.ptr<short>(i - boundaries.start + 1);

            if (!L2gradient)
            {
                int j = 0, width = src.cols * cn;
#if CV_SSE2
                if (haveSSE2)
                {
                    __m128i v_zero = _mm_setzero_si128();
                    for ( ; j <= width - 8; j += 8)
                    {
                        __m128i v_dx = _mm_loadu_si128((const __m128i *)(_dx + j));
                        __m128i v_dy = _mm_loadu_si128((const __m128i *)(_dy + j));
                        v_dx = _mm_max_epi16(v_dx, _mm_sub_epi16(v_zero, v_dx));
                        v_dy = _mm_max_epi16(v_dy, _mm_sub_epi16(v_zero, v_dy));

                        __m128i v_norm = _mm_add_epi32(_mm_unpacklo_epi16(v_dx, v_zero), _mm_unpacklo_epi16(v_dy, v_zero));
                        _mm_storeu_si128((__m128i *)(_norm + j), v_norm);

                        v_norm = _mm_add_epi32(_mm_unpackhi_epi16(v_dx, v_zero), _mm_unpackhi_epi16(v_dy, v_zero));
                        _mm_storeu_si128((__m128i *)(_norm + j + 4), v_norm);
                    }
                }
#elif CV_NEON
                for ( ; j <= width - 8; j += 8)
                {
                    int16x8_t v_dx = vld1q_s16(_dx + j), v_dy = vld1q_s16(_dy + j);
                    vst1q_s32(_norm + j, vaddq_s32(vabsq_s32(vmovl_s16(vget_low_s16(v_dx))),
                                                   vabsq_s32(vmovl_s16(vget_low_s16(v_dy)))));
                    vst1q_s32(_norm + j + 4, vaddq_s32(vabsq_s32(vmovl_s16(vget_high_s16(v_dx))),
                                                       vabsq_s32(vmovl_s16(vget_high_s16(v_dy)))));
                }
#endif
                for ( ; j < width; ++j)
                    _norm[j] = std::abs(int(_dx[j])) + std::abs(int(_dy[j]));
            }
            else
            {
                int j = 0, width = src.cols * cn;
#if CV_SSE2
                if (haveSSE2)
                {
                    for ( ; j <= width - 8; j += 8)
                    {
                        __m128i v_dx = _mm_loadu_si128((const __m128i *)(_dx + j));
                        __m128i v_dy = _mm_loadu_si128((const __m128i *)(_dy + j));

                        __m128i v_dx_ml = _mm_mullo_epi16(v_dx, v_dx), v_dx_mh = _mm_mulhi_epi16(v_dx, v_dx);
                        __m128i v_dy_ml = _mm_mullo_epi16(v_dy, v_dy), v_dy_mh = _mm_mulhi_epi16(v_dy, v_dy);

                        __m128i v_norm = _mm_add_epi32(_mm_unpacklo_epi16(v_dx_ml, v_dx_mh), _mm_unpacklo_epi16(v_dy_ml, v_dy_mh));
                        _mm_storeu_si128((__m128i *)(_norm + j), v_norm);

                        v_norm = _mm_add_epi32(_mm_unpackhi_epi16(v_dx_ml, v_dx_mh), _mm_unpackhi_epi16(v_dy_ml, v_dy_mh));
                        _mm_storeu_si128((__m128i *)(_norm + j + 4), v_norm);
                    }
                }
#elif CV_NEON
                for ( ; j <= width - 8; j += 8)
                {
                    int16x8_t v_dx = vld1q_s16(_dx + j), v_dy = vld1q_s16(_dy + j);
                    int16x4_t v_dxp = vget_low_s16(v_dx), v_dyp = vget_low_s16(v_dy);
                    int32x4_t v_dst = vmlal_s16(vmull_s16(v_dxp, v_dxp), v_dyp, v_dyp);
                    vst1q_s32(_norm + j, v_dst);

                    v_dxp = vget_high_s16(v_dx), v_dyp = vget_high_s16(v_dy);
                    v_dst = vmlal_s16(vmull_s16(v_dxp, v_dxp), v_dyp, v_dyp);
                    vst1q_s32(_norm + j + 4, v_dst);
                }
#endif
                for ( ; j < width; ++j)
                    _norm[j] = int(_dx[j])*_dx[j] + int(_dy[j])*_dy[j];
            }

            if (cn > 1)
            {
                for(int j = 0, jn = 0; j < src.cols; ++j, jn += cn)
                {
                    int maxIdx = jn;
                    for(int k = 1; k < cn; ++k)
                        if(_norm[jn + k] > _norm[maxIdx]) maxIdx = jn + k;
                    _norm[j] = _norm[maxIdx];
                    _dx[j] = _dx[maxIdx];
                    _dy[j] = _dy[maxIdx];
                }
            }
            _norm[-1] = _norm[src.cols] = 0;

            // at the very beginning we do not have a complete ring
            // buffer of 3 magnitude rows for non-maxima suppression
            if (i <= boundaries.start)
                continue;

            uchar* _map = map + mapstep*i + 1;
            _map[-1] = _map[src.cols] = 1;

            int* _mag = mag_buf[1] + 1; // take the central row
            ptrdiff_t magstep1 = mag_buf[2] - mag_buf[1];
            ptrdiff_t magstep2 = mag_buf[0] - mag_buf[1];

            const short* _x = dx.ptr<short>(i - boundaries.start);
            const short* _y = dy.ptr<short>(i - boundaries.start);

            if ((stack_top - stack_bottom) + src.cols > maxsize)
            {
                int sz = (int)(stack_top - stack_bottom);
                maxsize = std::max(maxsize * 3/2, sz + src.cols);
                stack.resize(maxsize);
                stack_bottom = &stack[0];
                stack_top = stack_bottom + sz;
            }

#define CANNY_PUSH(d)    *(d) = uchar(2), *stack_top++ = (d)
#define CANNY_POP(d)     (d) = *--stack_top

            int prev_flag = 0;
            bool canny_push = false;
            for (int j = 0; j < src.cols; j++)
            {
                #define CANNY_SHIFT 15
                const int TG22 = (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5);

                int m = _mag[j];

                if (m > low)
                {
                    int xs = _x[j];
                    int ys = _y[j];
                    int x = std::abs(xs);
                    int y = std::abs(ys) << CANNY_SHIFT;

                    int tg22x = x * TG22;

                    if (y < tg22x)
                    {
                        if (m > _mag[j-1] && m >= _mag[j+1]) canny_push = true;
                    }
                    else
                    {
                        int tg67x = tg22x + (x << (CANNY_SHIFT+1));
                        if (y > tg67x)
                        {
                            if (m > _mag[j+magstep2] && m >= _mag[j+magstep1]) canny_push = true;
                        }
                        else
                        {
                            int s = (xs ^ ys) < 0 ? -1 : 1;
                            if (m > _mag[j+magstep2-s] && m > _mag[j+magstep1+s]) canny_push = true;
                        }
                    }
                }
                if (!canny_push)
                {
                    prev_flag = 0;
                    _map[j] = uchar(1);
                    continue;
                }
                else
                {
                    // _map[j-mapstep] is short-circuited at the start because previous thread is
                    // responsible for initializing it.
                    if (!prev_flag && m > high && (i <= boundaries.start+1 || _map[j-mapstep] != 2) )
                    {
                        CANNY_PUSH(_map + j);
                        prev_flag = 1;
                    }
                    else
                        _map[j] = 0;

                    canny_push = false;
                }
            }

            // scroll the ring buffer
            _mag = mag_buf[0];
            mag_buf[0] = mag_buf[1];
            mag_buf[1] = mag_buf[2];
            mag_buf[2] = _mag;
        }

        // now track the edges (hysteresis thresholding)
        while (stack_top > stack_bottom)
        {
            if ((stack_top - stack_bottom) + 8 > maxsize)
            {
                int sz = (int)(stack_top - stack_bottom);
                maxsize = maxsize * 3/2;
                stack.resize(maxsize);
                stack_bottom = &stack[0];
                stack_top = stack_bottom + sz;
            }

            uchar* m;
            CANNY_POP(m);

            // Stops thresholding from expanding to other slices by sending pixels in the borders of each
            // slice in a queue to be serially processed later.
            if ( (m < map + (boundaries.start + 2) * mapstep) || (m >= map + boundaries.end * mapstep) )
            {
                borderPeaks.push(m);
                continue;
            }

            if (!m[-1])         CANNY_PUSH(m - 1);
            if (!m[1])          CANNY_PUSH(m + 1);
            if (!m[-mapstep-1]) CANNY_PUSH(m - mapstep - 1);
            if (!m[-mapstep])   CANNY_PUSH(m - mapstep);
            if (!m[-mapstep+1]) CANNY_PUSH(m - mapstep + 1);
            if (!m[mapstep-1])  CANNY_PUSH(m + mapstep - 1);
            if (!m[mapstep])    CANNY_PUSH(m + mapstep);
            if (!m[mapstep+1])  CANNY_PUSH(m + mapstep + 1);
        }
    }