data/chempy/sidechains/sc_bb_dep.py (116 lines of code) (raw):
# pymol -c generate2.py
from chempy import io
from glob import glob
from copy import deepcopy
# backbone-independent rotamers
lines = io.lst.fromFile("bbdep02.May.lib")
chi = { 'CYS' :
{ '1': ('N' , 'CA' , 'CB' , 'SG' ) },
'ASP' :
{ '1': ('N' , 'CA' , 'CB' , 'CG' ),
'2': ('CA' , 'CB' , 'CG' , 'OD1'), },
'GLU' :
{ '1': ('N' , 'CA' , 'CB' , 'CG' ),
'2': ('CA' , 'CB' , 'CG' , 'CD' ),
'3': ('CB' , 'CG' , 'CD' , 'OE1'), },
'PHE' :
{ '1': ('N' , 'CA' , 'CB' , 'CG' ),
'2': ('CA' , 'CB' , 'CG' , 'CD1'), },
'HIS' :
{ '1': ('N' , 'CA' , 'CB' , 'CG' ),
'2': ('CA' , 'CB' , 'CG' , 'ND1'), },
'ILE' :
{ '1': ('N' , 'CA' , 'CB' , 'CG1'),
'2': ('CA' , 'CB' , 'CG1', 'CD1+CD'), },
'LYS' :
{ '1': ('N' , 'CA' , 'CB' ,'CG' ),
'2': ('CA' , 'CB' , 'CG' ,'CD' ),
'3': ('CB' , 'CG' , 'CD' ,'CE' ),
'4': ('CG' , 'CD' , 'CE' ,'NZ' ), },
'LEU' :
{ '1': ('N' , 'CA' , 'CB' , 'CG' ),
'2': ('CA' , 'CB' , 'CG' , 'CD1'), },
'MET' :
{ '1': ('N' , 'CA' , 'CB' ,'CG' ),
'2': ('CA' , 'CB' , 'CG' ,'SD' ),
'3': ('CB' , 'CG' , 'SD' ,'CE' ), },
'ASN' :
{ '1': ('N' , 'CA' , 'CB' , 'CG' ),
'2': ('CA' , 'CB' , 'CG' , 'OD1'), },
'PRO' :
{ '1': ('N' , 'CA' , 'CB' , 'CG' ),
'2': ('CA' , 'CB' , 'CG' , 'CD' ), },
'GLN' :
{ '1': ('N' , 'CA' , 'CB' , 'CG' ),
'2': ('CA' , 'CB' , 'CG' , 'CD' ),
'3': ('CB' , 'CG' , 'CD' , 'OE1'), },
'ARG' :
{ '1': ('N' , 'CA' , 'CB' ,'CG' ),
'2': ('CA' , 'CB' , 'CG' ,'CD' ),
'3': ('CB' , 'CG' , 'CD' ,'NE' ),
'4': ('CG' , 'CD' , 'NE' ,'CZ' ), },
'SER' :
{ '1': ('N' , 'CA' , 'CB' , 'OG' ), },
'THR' :
{ '1': ('N' , 'CA' , 'CB' , 'OG1'), },
'VAL' :
{ '1': ('N' , 'CA' , 'CB' , 'CG1'), },
'TRP' :
{ '1': ('N' , 'CA' , 'CB' , 'CG' ),
'2': ('CA' , 'CB' , 'CG' , 'CD1'), },
'TYR' :
{ '1': ('N' , 'CA' , 'CB' , 'CG' ),
'2': ('CA' , 'CB' , 'CG' , 'CD1'), },
}
total = {}
output = {}
# first, total the number of rotamers for each residue
for line in lines:
field = line.split()
if len(field)>6:
resn = field[0]
phi = int(field[1])
psi = int(field[2])
key = (resn, phi, psi)
total[key] = total.get(key,0) + float(field[8])
# now build library, including frequency value
dd = {}
for line in lines:
field = line.split()
len_field = len(field)
if len_field>11:
resn = field[0]
phi = int(field[1])
psi = int(field[2])
if (((psi==(60*(psi/60))) and (phi==(60*(phi/60)))) or
((psi==(20*(psi/20))) and (phi==(20*(phi/20))) and (int(field[3])>0)) or
((psi==(10*(psi/10))) and (phi==(10*(phi/10))) and (int(field[3])>=250))):
if (phi,psi) not in dd:
# print phi,psi
dd[(phi,psi)]=1
key = (resn, phi, psi)
list = output.get(key,[])
fsum = float(field[8])
dict = {}
if total[key]>0.0:
freq = fsum/total[key]
else:
freq = 0.0
if freq>0.01:
dict['FREQ'] = freq
len_chi = len(chi[resn])
if len_chi>0:
chi1 = float(field[9])
dict[chi[resn]['1']] = chi1
if len_chi>1:
chi2 = float(field[10])
dict[chi[resn]['2']] = chi2
if len_chi>2:
chi3 = float(field[11])
dict[chi[resn]['3']] = chi3
if len_chi>3:
chi4 = float(field[12])
dict[chi[resn]['4']] = chi4
list.append((freq,dict))
output[key] = list
# sort by priority
for key in list(output.keys()):
list = output[key]
list.sort()
list.reverse()
output[key] = [x[1] for x in list]
#for key in output.keys():
#
# if key[0] == 'HIS':
# output[( 'HIE', ) + key[1:]] = output[key]
# output[( 'HID', ) + key[1:]] = output[key]
# output[( 'HIP', ) + key[1:]] = output[key]
# elif key[0] == 'CYS':
# output[( 'CYX', ) + key[1:]] = output[key]
io.pkl.toFile(output,"sc_bb_dep.pkl")