basic_pitch/nn.py (53 lines of code) (raw):

#!/usr/bin/env python # encoding: utf-8 # # Copyright 2022 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, List import tensorflow as tf import tensorflow.keras.backend as K from basic_pitch.layers.math import log_base_b class HarmonicStacking(tf.keras.layers.Layer): """Harmonic stacking layer Input shape: (n_batch, n_times, n_freqs, 1) Output shape: (n_batch, n_times, n_output_freqs, len(harmonics)) n_freqs should be much larger than n_output_freqs so that information from the upper harmonics is captured. Attributes: bins_per_semitone: The number of bins per semitone of the input CQT harmonics: List of harmonics to use. Should be positive numbers. shifts: A list containing the number of bins to shift in frequency for each harmonic n_output_freqs: The number of frequency bins in each harmonic layer. """ def __init__( self, bins_per_semitone: int, harmonics: List[float], n_output_freqs: int, name: str = "harmonic_stacking" ): """Downsample frequency by stride, upsample channels by 4.""" super().__init__(trainable=False, name=name) self.bins_per_semitone = bins_per_semitone self.harmonics = harmonics self.shifts = [ int(tf.math.round(12.0 * self.bins_per_semitone * log_base_b(float(h), 2))) for h in self.harmonics ] self.n_output_freqs = n_output_freqs def get_config(self) -> Any: config = super().get_config().copy() config.update( { "bins_per_semitone": self.bins_per_semitone, "harmonics": self.harmonics, "n_output_freqs": self.n_output_freqs, "name": self.name, } ) return config def call(self, x: tf.Tensor) -> tf.Tensor: # (n_batch, n_times, n_freqs, 1) tf.debugging.assert_equal(tf.shape(x).shape, 4) channels = [] for shift in self.shifts: if shift == 0: padded = x elif shift > 0: paddings = tf.constant([[0, 0], [0, 0], [0, shift], [0, 0]]) padded = tf.pad(x[:, :, shift:, :], paddings) elif shift < 0: paddings = tf.constant([[0, 0], [0, 0], [-shift, 0], [0, 0]]) padded = tf.pad(x[:, :, :shift, :], paddings) else: raise ValueError channels.append(padded) x = tf.concat(channels, axis=-1) x = x[:, :, : self.n_output_freqs, :] # return only the first n_output_freqs frequency channels return x class FlattenAudioCh(tf.keras.layers.Layer): """Layer which removes a "channels" dimension of size 1. Input shape: (batch, time, 1) Output shape: (batch, time) """ def call(self, x: tf.Tensor) -> tf.Tensor: """x: (batch, time, ch)""" shapes = K.int_shape(x) tf.assert_equal(shapes[2], 1) return tf.keras.layers.Reshape([shapes[1]])(x) # ignore batch size class FlattenFreqCh(tf.keras.layers.Layer): """Layer to flatten the frequency channel and make each channel part of the frequency dimension. Input shape: (batch, time, freq, ch) Output shape: (batch, time, freq*ch) """ def call(self, x: tf.Tensor) -> tf.Tensor: shapes = K.int_shape(x) return tf.keras.layers.Reshape([shapes[1], shapes[2] * shapes[3]])(x) # ignore batch size