spotify_confidence/analysis/frequentist/chi_squared.py (37 lines of code) (raw):
# Copyright 2017-2020 Spotify AB
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Union, Iterable
from pandas import DataFrame
from spotify_confidence.analysis.abstract_base_classes.confidence_computer_abc import ConfidenceComputerABC
from spotify_confidence.analysis.abstract_base_classes.confidence_grapher_abc import ConfidenceGrapherABC
from spotify_confidence.analysis.constants import BONFERRONI, METHOD_COLUMN_NAME
from spotify_confidence.analysis.frequentist.experiment import Experiment
class ChiSquared(Experiment):
def __init__(
self,
data_frame: DataFrame,
numerator_column: str,
denominator_column: str,
categorical_group_columns: Union[str, Iterable],
ordinal_group_column: Union[str, None] = None,
interval_size: float = 0.95,
correction_method: str = BONFERRONI,
confidence_computer: ConfidenceComputerABC = None,
confidence_grapher: ConfidenceGrapherABC = None,
metric_column: Union[str, None] = None,
treatment_column: Union[str, None] = None,
):
super(ChiSquared, self).__init__(
data_frame=data_frame.assign(**{METHOD_COLUMN_NAME: "chi-squared"}),
numerator_column=numerator_column,
numerator_sum_squares_column=numerator_column,
denominator_column=denominator_column,
categorical_group_columns=categorical_group_columns,
ordinal_group_column=ordinal_group_column,
interval_size=interval_size,
correction_method=correction_method,
confidence_computer=confidence_computer,
confidence_grapher=confidence_grapher,
method_column=METHOD_COLUMN_NAME,
metric_column=metric_column,
treatment_column=treatment_column,
power=0.8,
)