in spotify_tensorflow/tfx/tft.py [0:0]
def run(self, args=None):
parser = argparse.ArgumentParser()
parser.add_argument(
"--training_data",
required=False,
help="path to the raw feature for training")
parser.add_argument(
"--evaluation_data",
required=False,
help="path to the raw feature for evaluation")
parser.add_argument(
"--output_dir",
required=True,
help="output dir for data transformation")
parser.add_argument(
"--schema_file",
required=True,
help="path to the schema txt file")
parser.add_argument(
"--temp_location",
required=True,
help="temporary working dir for tf.transform job")
parser.add_argument(
"--transform_fn_dir",
required=False,
help="path to the saved transform function")
parser.add_argument(
"--compression_type",
required=False,
help="compression type for writing of tf.records")
if args is None:
args = sys.argv[1:]
tft_args, pipeline_args = parser.parse_known_args(args=args)
# pipeline_args also needs temp_location and requirements_file
pipeline_args.append("--temp_location=%s" % tft_args.temp_location)
tftransform(pipeline_args=pipeline_args,
temp_location=tft_args.temp_location,
schema_file=tft_args.schema_file,
output_dir=tft_args.output_dir,
preprocessing_fn=self.preprocessing_fn,
training_data=tft_args.training_data,
evaluation_data=tft_args.evaluation_data,
transform_fn_dir=tft_args.transform_fn_dir,
compression_type=tft_args.compression_type)