def _examples()

in spotify_tensorflow/dataset.py [0:0]


    def _examples(cls,
                  file_pattern,  # type: str
                  schema_path=None,  # type: str
                  feature_spec=None,  # type: Dict[str, Union[tf.FixedLenFeature, tf.VarLenFeature, tf.SparseFeature]]  # noqa: E501
                  compression_type=None,  # type: str
                  batch_size=128,  # type: int
                  shuffle=True,  # type: bool
                  num_epochs=1,  # type: int
                  shuffle_buffer_size=10000,  # type: int
                  shuffle_seed=None,  # type: int
                  prefetch_buffer_size=1,  # type: int
                  reader_num_threads=1,  # type: int
                  parser_num_threads=2,  # type: int
                  sloppy_ordering=False,  # type: bool
                  drop_final_batch=False  # type: bool
                  ):
        # type: (...) -> tf.data.Dataset

        if schema_path:
            feature_spec, _ = cls.parse_schema(schema_path)

        logger.debug("Will parse features from: `%s`, using features spec: %s",
                     file_pattern,
                     str(feature_spec))

        from tensorflow.contrib.data import make_batched_features_dataset
        reader_args = [compression_type] if compression_type else None
        dataset = make_batched_features_dataset(file_pattern,
                                                batch_size=batch_size,
                                                features=feature_spec,
                                                reader_args=reader_args,
                                                num_epochs=num_epochs,
                                                shuffle=shuffle,
                                                shuffle_buffer_size=shuffle_buffer_size,
                                                shuffle_seed=shuffle_seed,
                                                prefetch_buffer_size=prefetch_buffer_size,
                                                reader_num_threads=reader_num_threads,
                                                parser_num_threads=parser_num_threads,
                                                sloppy_ordering=sloppy_ordering,
                                                drop_final_batch=drop_final_batch)
        return dataset