in spotify_tensorflow/dataset.py [0:0]
def _examples(cls,
file_pattern, # type: str
schema_path=None, # type: str
feature_spec=None, # type: Dict[str, Union[tf.FixedLenFeature, tf.VarLenFeature, tf.SparseFeature]] # noqa: E501
default_value=0, # type: float
compression_type=None, # type: str
batch_size=128, # type: int
shuffle=True, # type: bool
num_epochs=1, # type: int
shuffle_buffer_size=10000, # type: int
shuffle_seed=None, # type: int
prefetch_buffer_size=1, # type: int
reader_num_threads=1, # type: int
parser_num_threads=2, # type: int
sloppy_ordering=False, # type: bool
drop_final_batch=False # type: bool
):
# type: (...) -> Iterator[pd.DataFrame]
Datasets._assert_eager("DataFrame")
dataset = Datasets.dict._examples(file_pattern=file_pattern,
schema_path=schema_path,
default_value=default_value,
feature_spec=feature_spec,
compression_type=compression_type,
batch_size=batch_size,
shuffle=shuffle,
num_epochs=num_epochs,
shuffle_buffer_size=shuffle_buffer_size,
shuffle_seed=shuffle_seed,
prefetch_buffer_size=prefetch_buffer_size,
reader_num_threads=reader_num_threads,
parser_num_threads=parser_num_threads,
sloppy_ordering=sloppy_ordering,
drop_final_batch=drop_final_batch)
for d in dataset:
yield pd.DataFrame(data=d)