def Do()

in tfx/components/evaluator/executor.py [0:0]


  def Do(self, input_dict: Dict[str, List[types.Artifact]],
         output_dict: Dict[str, List[types.Artifact]],
         exec_properties: Dict[str, Any]) -> None:
    """Runs a batch job to evaluate the eval_model against the given input.

    Args:
      input_dict: Input dict from input key to a list of Artifacts.
        - model: exported model.
        - examples: examples for eval the model.
      output_dict: Output dict from output key to a list of Artifacts.
        - evaluation: model evaluation results.
      exec_properties: A dict of execution properties.
        - eval_config: JSON string of tfma.EvalConfig.
        - feature_slicing_spec: JSON string of evaluator_pb2.FeatureSlicingSpec
          instance, providing the way to slice the data. Deprecated, use
          eval_config.slicing_specs instead.
        - example_splits: JSON-serialized list of names of splits on which the
          metrics are computed. Default behavior (when example_splits is set to
          None) is using the 'eval' split.

    Returns:
      None
    """
    if standard_component_specs.EXAMPLES_KEY not in input_dict:
      raise ValueError('EXAMPLES_KEY is missing from input dict.')
    if standard_component_specs.EVALUATION_KEY not in output_dict:
      raise ValueError('EVALUATION_KEY is missing from output dict.')
    if standard_component_specs.MODEL_KEY in input_dict and len(
        input_dict[standard_component_specs.MODEL_KEY]) > 1:
      raise ValueError('There can be only one candidate model, there are %d.' %
                       (len(input_dict[standard_component_specs.MODEL_KEY])))
    if standard_component_specs.BASELINE_MODEL_KEY in input_dict and len(
        input_dict[standard_component_specs.BASELINE_MODEL_KEY]) > 1:
      raise ValueError(
          'There can be only one baseline model, there are %d.' %
          (len(input_dict[standard_component_specs.BASELINE_MODEL_KEY])))

    self._log_startup(input_dict, output_dict, exec_properties)

    # Add fairness indicator metric callback if necessary.
    fairness_indicator_thresholds = json_utils.loads(
        exec_properties.get(
            standard_component_specs.FAIRNESS_INDICATOR_THRESHOLDS_KEY, 'null'))
    add_metrics_callbacks = None
    if fairness_indicator_thresholds:
      add_metrics_callbacks = [
          tfma.post_export_metrics.fairness_indicators(  # pytype: disable=module-attr
              thresholds=fairness_indicator_thresholds),
      ]

    output_uri = artifact_utils.get_single_uri(
        output_dict[constants.EVALUATION_KEY])

    # Make sure user packages get propagated to the remote Beam worker.
    unused_module_path, extra_pip_packages = udf_utils.decode_user_module_key(
        exec_properties.get(standard_component_specs.MODULE_PATH_KEY, None))
    for pip_package_path in extra_pip_packages:
      local_pip_package_path = io_utils.ensure_local(pip_package_path)
      self._beam_pipeline_args.append('--extra_package=%s' %
                                      local_pip_package_path)

    eval_shared_model_fn = udf_utils.try_get_fn(
        exec_properties=exec_properties,
        fn_name='custom_eval_shared_model') or tfma.default_eval_shared_model

    run_validation = False
    models = []
    if (standard_component_specs.EVAL_CONFIG_KEY in exec_properties
        and exec_properties[standard_component_specs.EVAL_CONFIG_KEY]):
      slice_spec = None
      has_baseline = bool(
          input_dict.get(standard_component_specs.BASELINE_MODEL_KEY))
      eval_config = tfma.EvalConfig()
      proto_utils.json_to_proto(
          exec_properties[standard_component_specs.EVAL_CONFIG_KEY],
          eval_config)
      # rubber_stamp is always assumed true, i.e., change threshold will always
      # be ignored when a baseline model is missing.
      if hasattr(tfma, 'utils'):
        eval_config = tfma.utils.update_eval_config_with_defaults(
            eval_config, has_baseline=has_baseline, rubber_stamp=True)
        tfma.utils.verify_eval_config(eval_config)
      else:
        # TODO(b/171992041): Replaced by tfma.utils.
        eval_config = tfma.update_eval_config_with_defaults(
            eval_config, has_baseline=has_baseline, rubber_stamp=True)
        tfma.verify_eval_config(eval_config)
      # Do not validate model when there is no thresholds configured. This is to
      # avoid accidentally blessing models when users forget to set thresholds.
      run_validation = bool(
          tfma.metrics.metric_thresholds_from_metrics_specs(
              eval_config.metrics_specs, eval_config=eval_config))
      if len(eval_config.model_specs) > 2:
        raise ValueError(