tfx/experimental/templates/taxi/local_runner.py (29 lines of code) (raw):

# Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define LocalDagRunner to run the pipeline locally.""" import os from absl import logging from tfx import v1 as tfx from tfx.experimental.templates.taxi.pipeline import configs from tfx.experimental.templates.taxi.pipeline import pipeline # TFX pipeline produces many output files and metadata. All output data will be # stored under this OUTPUT_DIR. # NOTE: It is recommended to have a separated OUTPUT_DIR which is *outside* of # the source code structure. Please change OUTPUT_DIR to other location # where we can store outputs of the pipeline. OUTPUT_DIR = '.' # TFX produces two types of outputs, files and metadata. # - Files will be created under PIPELINE_ROOT directory. # - Metadata will be written to SQLite database in METADATA_PATH. PIPELINE_ROOT = os.path.join(OUTPUT_DIR, 'tfx_pipeline_output', configs.PIPELINE_NAME) METADATA_PATH = os.path.join(OUTPUT_DIR, 'tfx_metadata', configs.PIPELINE_NAME, 'metadata.db') # The last component of the pipeline, "Pusher" will produce serving model under # SERVING_MODEL_DIR. SERVING_MODEL_DIR = os.path.join(PIPELINE_ROOT, 'serving_model') # Specifies data file directory. DATA_PATH should be a directory containing CSV # files for CsvExampleGen in this example. By default, data files are in the # `data` directory. # NOTE: If you upload data files to GCS(which is recommended if you use # Kubeflow), you can use a path starting "gs://YOUR_BUCKET_NAME/path" for # DATA_PATH. For example, # DATA_PATH = 'gs://bucket/chicago_taxi_trips/csv/'. DATA_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data') def run(): """Define a local pipeline.""" tfx.orchestration.LocalDagRunner().run( pipeline.create_pipeline( pipeline_name=configs.PIPELINE_NAME, pipeline_root=PIPELINE_ROOT, data_path=DATA_PATH, # TODO(step 7): (Optional) Uncomment here to use BigQueryExampleGen. # query=configs.BIG_QUERY_QUERY, # TODO(step 5): (Optional) Set the path of the customized schema. # schema_path=generated_schema_path, preprocessing_fn=configs.PREPROCESSING_FN, run_fn=configs.RUN_FN, train_args=tfx.proto.TrainArgs(num_steps=configs.TRAIN_NUM_STEPS), eval_args=tfx.proto.EvalArgs(num_steps=configs.EVAL_NUM_STEPS), eval_accuracy_threshold=configs.EVAL_ACCURACY_THRESHOLD, serving_model_dir=SERVING_MODEL_DIR, # TODO(step 7): (Optional) Uncomment here to use provide GCP related # config for BigQuery with Beam DirectRunner. # beam_pipeline_args=configs. # BIG_QUERY_WITH_DIRECT_RUNNER_BEAM_PIPELINE_ARGS, metadata_connection_config=tfx.orchestration.metadata .sqlite_metadata_connection_config(METADATA_PATH))) if __name__ == '__main__': logging.set_verbosity(logging.INFO) run()