in sourcecode/scoring/mf_base_scorer.py [0:0]
def __init__(
self,
includedTopics: Set[str] = set(),
includedGroups: Set[int] = set(),
includeUnassigned: bool = False,
captureThreshold: Optional[float] = None,
seed: Optional[int] = None,
pseudoraters: Optional[bool] = True,
minNumRatingsPerRater: int = 10,
minNumRatersPerNote: int = 5,
minRatingsNeeded: int = 5,
minMeanNoteScore: float = 0.05,
minCRHVsCRNHRatio: float = 0.00,
minRaterAgreeRatio: float = 0.66,
crhThreshold: float = 0.40,
crnhThresholdIntercept: float = -0.05,
crnhThresholdNoteFactorMultiplier: float = -0.8,
crnhThresholdNMIntercept: float = -0.15,
crnhThresholdUCBIntercept: float = -0.04,
crhSuperThreshold: Optional[float] = 0.5,
lowDiligenceThreshold: float = 0.263,
factorThreshold: float = 0.5,
inertiaDelta: float = 0.01,
useStableInitialization: bool = True,
saveIntermediateState: bool = False,
threads: int = c.defaultNumThreads,
maxFirstMFTrainError: float = 0.16,
maxFinalMFTrainError: float = 0.09,
userFactorLambda=None,
noteFactorLambda=None,
userInterceptLambda=None,
noteInterceptLambda=None,
globalInterceptLambda=None,
diamondLambda=None,
normalizedLossHyperparameters=None,
multiplyPenaltyByHarassmentScore: bool = True,
minimumHarassmentScoreToPenalize: float = 2.0,
tagConsensusHarassmentHelpfulRatingPenalty: int = 10,
useReputation: bool = True,
tagFilterPercentile: int = 95,
incorrectFilterThreshold: float = 2.5,
firmRejectThreshold: Optional[float] = None,