def __init__()

in sourcecode/scoring/mf_base_scorer.py [0:0]


  def __init__(
    self,
    includedTopics: Set[str] = set(),
    includedGroups: Set[int] = set(),
    includeUnassigned: bool = False,
    captureThreshold: Optional[float] = None,
    seed: Optional[int] = None,
    pseudoraters: Optional[bool] = True,
    minNumRatingsPerRater: int = 10,
    minNumRatersPerNote: int = 5,
    minRatingsNeeded: int = 5,
    minMeanNoteScore: float = 0.05,
    minCRHVsCRNHRatio: float = 0.00,
    minRaterAgreeRatio: float = 0.66,
    crhThreshold: float = 0.40,
    crnhThresholdIntercept: float = -0.05,
    crnhThresholdNoteFactorMultiplier: float = -0.8,
    crnhThresholdNMIntercept: float = -0.15,
    crnhThresholdUCBIntercept: float = -0.04,
    crhSuperThreshold: Optional[float] = 0.5,
    lowDiligenceThreshold: float = 0.263,
    factorThreshold: float = 0.5,
    inertiaDelta: float = 0.01,
    useStableInitialization: bool = True,
    saveIntermediateState: bool = False,
    threads: int = c.defaultNumThreads,
    maxFirstMFTrainError: float = 0.16,
    maxFinalMFTrainError: float = 0.09,
    userFactorLambda=None,
    noteFactorLambda=None,
    userInterceptLambda=None,
    noteInterceptLambda=None,
    globalInterceptLambda=None,
    diamondLambda=None,
    normalizedLossHyperparameters=None,
    multiplyPenaltyByHarassmentScore: bool = True,
    minimumHarassmentScoreToPenalize: float = 2.0,
    tagConsensusHarassmentHelpfulRatingPenalty: int = 10,
    useReputation: bool = True,
    tagFilterPercentile: int = 95,
    incorrectFilterThreshold: float = 2.5,
    firmRejectThreshold: Optional[float] = None,