sourcecode/scoring/process_data.py (564 lines of code) (raw):
from abc import ABC, abstractmethod
from io import StringIO
import logging
import os
from typing import Dict, List, Optional, Tuple
from . import constants as c, note_status_history
from .pandas_utils import get_df_info
from .pflip_model import PFlipModel
import joblib
import numpy as np
import pandas as pd
from sklearn.pipeline import Pipeline
logger = logging.getLogger("birdwatch.process_data")
logger.setLevel(logging.INFO)
def read_from_strings(
notesStr: str, ratingsStr: str, noteStatusHistoryStr: str
) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
"""Read from TSV formatted String.
Args:
notesStr (str): tsv-formatted notes dataset
ratingsStr (str): tsv-formatted ratings dataset
noteStatusHistoryStr (str): tsv-formatted note status history dataset
Returns:
Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: notes, ratings, noteStatusHistory
"""
notes = pd.read_csv(
StringIO(notesStr), sep="\t", names=c.noteTSVColumns, dtype=c.noteTSVTypeMapping
)
ratings = pd.read_csv(
StringIO(ratingsStr), sep="\t", names=c.ratingTSVColumns, dtype=c.ratingTSVTypeMapping
)
noteStatusHistory = pd.read_csv(
StringIO(noteStatusHistoryStr),
sep="\t",
names=c.noteStatusHistoryTSVColumns,
dtype=c.noteStatusHistoryTSVTypeMapping,
)
return notes, ratings, noteStatusHistory
def tsv_parser(
rawTSV: str,
mapping: Dict[str, type],
columns: List[str],
header: bool,
useCols: Optional[List[str]] = None,
chunkSize: Optional[int] = None,
convertNAToNone: bool = True,
) -> pd.DataFrame:
"""Parse a TSV input and raise an Exception if the input is not formatted as expected.
Args:
rawTSV: str contianing entire TSV input
mapping: Dict mapping column names to types
columns: List of column names
header: bool indicating whether the input will have a header
useCols: Optional list of columns to return
chunkSize: Optional number of rows to read at a time when returning a subset of columns
Returns:
pd.DataFrame containing parsed data
"""
try:
firstLine = rawTSV.split("\n")[0]
num_fields = len(firstLine.split("\t"))
if num_fields != len(columns):
raise ValueError(f"Expected {len(columns)} columns, but got {num_fields}")
if useCols and chunkSize:
textParser = pd.read_csv(
StringIO(rawTSV),
sep="\t",
names=columns,
dtype=mapping,
header=0 if header else None,
index_col=[],
usecols=useCols,
chunksize=chunkSize,
)
data = pd.concat(textParser, ignore_index=True)
else:
data = pd.read_csv(
StringIO(rawTSV),
sep="\t",
names=columns,
dtype=mapping,
header=0 if header else None,
index_col=[],
usecols=useCols,
)
if convertNAToNone:
logger.info("Logging size effect of convertNAToNone")
logger.info("Before conversion:")
logger.info(get_df_info(data))
# float types will be nan if missing; newer nullable types like "StringDtype" or "Int64Dtype" will by default
# be pandas._libs.missing.NAType if missing. Set those to None and change the dtype back to object.
for colname, coltype in mapping.items():
# check if coltype is pd.BooleanDtype
if coltype in set(
[pd.StringDtype(), pd.BooleanDtype(), pd.Int64Dtype(), pd.Int32Dtype(), "boolean"]
):
data[colname] = data[colname].astype(object)
data.loc[pd.isna(data[colname]), colname] = None
logger.info("After conversion:")
logger.info(get_df_info(data))
return data
except (ValueError, IndexError) as e:
raise ValueError(f"Invalid input: {e}")
def tsv_reader_single(
path: str, mapping, columns, header=False, parser=tsv_parser, convertNAToNone=True
):
"""Read a single TSV file."""
with open(path, "r", encoding="utf-8") as handle:
return tsv_parser(handle.read(), mapping, columns, header, convertNAToNone=convertNAToNone)
def tsv_reader(
path: str, mapping, columns, header=False, parser=tsv_parser, convertNAToNone=True
) -> pd.DataFrame:
"""Read a single TSV file or a directory of TSV files."""
if os.path.isdir(path):
dfs = [
tsv_reader_single(
os.path.join(path, filename),
mapping,
columns,
header,
parser,
convertNAToNone=convertNAToNone,
)
for filename in os.listdir(path)
if filename.endswith(".tsv")
]
return pd.concat(dfs, ignore_index=True)
else:
return tsv_reader_single(
path, mapping, columns, header, parser, convertNAToNone=convertNAToNone
)
def read_from_tsv(
notesPath: Optional[str],
ratingsPath: Optional[str],
noteStatusHistoryPath: Optional[str],
userEnrollmentPath: Optional[str],
headers: bool,
) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame]:
"""Mini function to read notes, ratings, and noteStatusHistory from TSVs.
Args:
notesPath (str): path
ratingsPath (str): path
noteStatusHistoryPath (str): path
userEnrollmentPath (str): path
headers: If true, expect first row of input files to be headers.
Returns:
Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame]: notes, ratings, noteStatusHistory, userEnrollment
"""
if notesPath is None:
notes = None
else:
notes = tsv_reader(
notesPath, c.noteTSVTypeMapping, c.noteTSVColumns, header=headers, convertNAToNone=False
)
assert len(notes.columns) == len(c.noteTSVColumns) and all(notes.columns == c.noteTSVColumns), (
f"note columns don't match: \n{[col for col in notes.columns if not col in c.noteTSVColumns]} are extra columns, "
+ f"\n{[col for col in c.noteTSVColumns if not col in notes.columns]} are missing."
) # ensure constants file is up to date.
if ratingsPath is None:
ratings = None
else:
ratings = tsv_reader(
ratingsPath, c.ratingTSVTypeMapping, c.ratingTSVColumns, header=headers, convertNAToNone=False
)
assert len(ratings.columns.values) == len(c.ratingTSVColumns) and all(
ratings.columns == c.ratingTSVColumns
), (
f"ratings columns don't match: \n{[col for col in ratings.columns if not col in c.ratingTSVColumns]} are extra columns, "
+ f"\n{[col for col in c.ratingTSVColumns if not col in ratings.columns]} are missing."
) # ensure constants file is up to date.
if noteStatusHistoryPath is None:
noteStatusHistory = None
else:
# TODO(jiansongc): clean up after new column is in production.
try:
noteStatusHistory = tsv_reader(
noteStatusHistoryPath,
c.noteStatusHistoryTSVTypeMapping,
c.noteStatusHistoryTSVColumns,
header=headers,
convertNAToNone=False,
)
assert len(noteStatusHistory.columns.values) == len(c.noteStatusHistoryTSVColumns) and all(
noteStatusHistory.columns == c.noteStatusHistoryTSVColumns
), (
f"noteStatusHistory columns don't match: \n{[col for col in noteStatusHistory.columns if not col in c.noteStatusHistoryTSVColumns]} are extra columns, "
+ f"\n{[col for col in c.noteStatusHistoryTSVColumns if not col in noteStatusHistory.columns]} are missing."
)
except ValueError:
noteStatusHistory = tsv_reader(
noteStatusHistoryPath,
c.noteStatusHistoryTSVTypeMappingOld,
c.noteStatusHistoryTSVColumnsOld,
header=headers,
convertNAToNone=False,
)
noteStatusHistory[c.timestampMillisOfFirstNmrDueToMinStableCrhTimeKey] = np.nan
assert len(noteStatusHistory.columns.values) == len(c.noteStatusHistoryTSVColumns) and all(
noteStatusHistory.columns == c.noteStatusHistoryTSVColumns
), (
f"noteStatusHistory columns don't match: \n{[col for col in noteStatusHistory.columns if not col in c.noteStatusHistoryTSVColumns]} are extra columns, "
+ f"\n{[col for col in c.noteStatusHistoryTSVColumns if not col in noteStatusHistory.columns]} are missing."
)
if userEnrollmentPath is None:
userEnrollment = None
else:
userEnrollment = tsv_reader(
userEnrollmentPath,
c.userEnrollmentTSVTypeMapping,
c.userEnrollmentTSVColumns,
header=headers,
convertNAToNone=False,
)
assert len(userEnrollment.columns.values) == len(c.userEnrollmentTSVColumns) and all(
userEnrollment.columns == c.userEnrollmentTSVColumns
), (
f"userEnrollment columns don't match: \n{[col for col in userEnrollment.columns if not col in c.userEnrollmentTSVColumns]} are extra columns, "
+ f"\n{[col for col in c.userEnrollmentTSVColumns if not col in userEnrollment.columns]} are missing."
)
return notes, ratings, noteStatusHistory, userEnrollment
def _filter_misleading_notes(
notes: pd.DataFrame,
ratings: pd.DataFrame,
noteStatusHistory: pd.DataFrame,
log: bool = True,
) -> pd.DataFrame:
"""
This function actually filters ratings (not notes), based on which notes they rate.
Filter out ratings of notes that say the Tweet isn't misleading.
Also filter out ratings of deleted notes, unless they were deleted after
c.deletedNotesTombstoneLaunchTime, and appear in noteStatusHistory.
Args:
notes (pd.DataFrame): _description_
ratings (pd.DataFrame): _description_
noteStatusHistory (pd.DataFrame): _description_
log (bool, optional): _description_. Defaults to True.
Returns:
pd.DataFrame: filtered ratings
"""
ratings = ratings.merge(
noteStatusHistory[[c.noteIdKey, c.createdAtMillisKey, c.classificationKey]],
on=c.noteIdKey,
how="left",
suffixes=("", "_nsh"),
unsafeAllowed=c.createdAtMillisKey,
)
deletedNoteKey = "deletedNote"
notDeletedMisleadingKey = "notDeletedMisleading"
deletedButInNSHKey = "deletedButInNSH"
createdAtMillisNSHKey = c.createdAtMillisKey + "_nsh"
ratings[deletedNoteKey] = pd.isna(ratings[c.classificationKey])
ratings[notDeletedMisleadingKey] = np.invert(ratings[deletedNoteKey]) & (
ratings[c.classificationKey] == c.notesSaysTweetIsMisleadingKey
)
ratings[deletedButInNSHKey] = ratings[deletedNoteKey] & np.invert(
pd.isna(ratings[createdAtMillisNSHKey])
)
deletedNotInNSH = (ratings[deletedNoteKey]) & pd.isna(ratings[createdAtMillisNSHKey])
notDeletedNotMisleadingOldUI = (
ratings[c.classificationKey] == c.noteSaysTweetIsNotMisleadingKey
) & (ratings[createdAtMillisNSHKey] <= c.notMisleadingUILaunchTime)
notDeletedNotMisleadingNewUI = (
ratings[c.classificationKey] == c.noteSaysTweetIsNotMisleadingKey
) & (ratings[createdAtMillisNSHKey] > c.notMisleadingUILaunchTime)
if log:
logger.info(
f"Preprocess Data: Filter misleading notes, starting with {len(ratings)} ratings on {len(np.unique(ratings[c.noteIdKey]))} notes"
)
logger.info(
f" Keeping {ratings[notDeletedMisleadingKey].sum()} ratings on {len(np.unique(ratings.loc[ratings[notDeletedMisleadingKey],c.noteIdKey]))} misleading notes"
)
logger.info(
f" Keeping {ratings[deletedButInNSHKey].sum()} ratings on {len(np.unique(ratings.loc[ratings[deletedButInNSHKey],c.noteIdKey]))} deleted notes that were previously scored (in note status history)"
)
logger.info(
f" Removing {notDeletedNotMisleadingOldUI.sum()} ratings on {len(np.unique(ratings.loc[notDeletedNotMisleadingOldUI, c.noteIdKey]))} older notes that aren't deleted, but are not-misleading."
)
logger.info(
f" Removing {deletedNotInNSH.sum()} ratings on {len(np.unique(ratings.loc[deletedNotInNSH, c.noteIdKey]))} notes that were deleted and not in note status history (e.g. old)."
)
ratings = ratings[
ratings[notDeletedMisleadingKey] | ratings[deletedButInNSHKey] | notDeletedNotMisleadingNewUI
]
ratings = ratings.drop(
columns=[
createdAtMillisNSHKey,
c.classificationKey,
deletedNoteKey,
notDeletedMisleadingKey,
deletedButInNSHKey,
]
)
return ratings
def remove_duplicate_ratings(ratings: pd.DataFrame) -> pd.DataFrame:
"""Drop duplicate ratings, then assert that there is exactly one rating per noteId per raterId.
Args:
ratings (pd.DataFrame) with possible duplicated ratings
Returns:
pd.DataFrame: ratings, with one record per userId, noteId.
"""
# Construct a new DataFrame to avoid SettingWithCopyWarning
ratings = pd.DataFrame(ratings.drop_duplicates())
numRatings = len(ratings)
numUniqueRaterIdNoteIdPairs = len(ratings.groupby([c.raterParticipantIdKey, c.noteIdKey]).head(1))
assert (
numRatings == numUniqueRaterIdNoteIdPairs
), f"Only {numUniqueRaterIdNoteIdPairs} unique raterId,noteId pairs but {numRatings} ratings"
return ratings
def remove_duplicate_notes(notes: pd.DataFrame) -> pd.DataFrame:
"""Remove duplicate notes, then assert that there is only one copy of each noteId.
Args:
notes (pd.DataFrame): with possible duplicate notes
Returns:
notes (pd.DataFrame) with one record per noteId
"""
# Construct a new DataFrame to avoid SettingWithCopyWarning
notes = pd.DataFrame(notes.drop_duplicates())
numNotes = len(notes)
numUniqueNotes = len(np.unique(notes[c.noteIdKey]))
assert (
numNotes == numUniqueNotes
), f"Found only {numUniqueNotes} unique noteIds out of {numNotes} notes"
return notes
def compute_helpful_num(ratings: pd.DataFrame):
"""
Populate the "helpfulNum" column.
not helpful: 0.0
somewhat helpful: 0.5
helpful: 1.0
"""
ratings.loc[:, c.helpfulNumKey] = np.nan
ratings.loc[ratings[c.helpfulKey] == 1, c.helpfulNumKey] = 1
ratings.loc[ratings[c.notHelpfulKey] == 1, c.helpfulNumKey] = 0
ratings.loc[ratings[c.helpfulnessLevelKey] == c.notHelpfulValueTsv, c.helpfulNumKey] = 0
ratings.loc[ratings[c.helpfulnessLevelKey] == c.somewhatHelpfulValueTsv, c.helpfulNumKey] = 0.5
ratings.loc[ratings[c.helpfulnessLevelKey] == c.helpfulValueTsv, c.helpfulNumKey] = 1
ratings = ratings.loc[~pd.isna(ratings[c.helpfulNumKey])]
return ratings
def preprocess_data(
notes: pd.DataFrame,
ratings: pd.DataFrame,
noteStatusHistory: pd.DataFrame,
shouldFilterNotMisleadingNotes: bool = True,
log: bool = True,
ratingsOnly: bool = False,
) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
"""Populate helpfulNumKey, a unified column that merges the helpfulness answers from
the V1 and V2 rating forms together, as described in
https://twitter.github.io/communitynotes/ranking-notes/#helpful-rating-mapping.
Also, filter notes that indicate the Tweet is misleading, if the flag is True.
Args:
notes (pd.DataFrame)
ratings (pd.DataFrame)
noteStatusHistory (pd.DataFrame)
shouldFilterNotMisleadingNotes (bool, optional): Defaults to True.
log (bool, optional): Defaults to True.
ratingsOnly (bool, optional): Defaults to False
Returns:
notes (pd.DataFrame)
ratings (pd.DataFrame)
noteStatusHistory (pd.DataFrame)
"""
if log:
logger.info(
f"Timestamp of latest rating in data: {pd.to_datetime(ratings[c.createdAtMillisKey], unit='ms').max()}",
)
if not ratingsOnly:
logger.info(
f"Timestamp of latest note in data: {pd.to_datetime(notes[c.createdAtMillisKey], unit='ms').max()}",
)
ratings = remove_duplicate_ratings(ratings)
ratings = compute_helpful_num(ratings)
if ratingsOnly:
return pd.DataFrame(), ratings, pd.DataFrame()
notes = remove_duplicate_notes(notes)
notes[c.tweetIdKey] = notes[c.tweetIdKey].astype(str)
noteStatusHistory = note_status_history.merge_note_info(noteStatusHistory, notes)
if shouldFilterNotMisleadingNotes:
ratings = _filter_misleading_notes(notes, ratings, noteStatusHistory, log)
if log:
logger.info(
"Num Ratings: %d, Num Unique Notes Rated: %d, Num Unique Raters: %d"
% (
len(ratings),
len(np.unique(ratings[c.noteIdKey])),
len(np.unique(ratings[c.raterParticipantIdKey])),
)
)
return notes, ratings, noteStatusHistory
def filter_ratings(
ratings: pd.DataFrame,
minNumRatingsPerRater: int,
minNumRatersPerNote: int,
log: bool = True,
) -> pd.DataFrame:
"""Apply min number of ratings for raters & notes. Instead of iterating these filters
until convergence, simply stop after going back and force once.
Args:
ratings: All ratings from Community Notes contributors.
minNumRatingsPerRater: Minimum number of ratings which a rater must produce to be
included in scoring. Raters with fewer ratings are removed.
minNumRatersPerNote: Minimum number of ratings which a note must have to be included
in scoring. Notes with fewer ratings are removed.
log: Debug output. Defaults to True.
Returns:
pd.DataFrame: filtered ratings
"""
def filter_notes(ratings):
note_counts = ratings[c.noteIdKey].value_counts()
valid_notes = note_counts[note_counts >= minNumRatersPerNote].index
return ratings[ratings[c.noteIdKey].isin(valid_notes)]
def filter_raters(ratings):
rater_counts = ratings[c.raterParticipantIdKey].value_counts()
valid_raters = rater_counts[rater_counts >= minNumRatingsPerRater].index
return ratings[ratings[c.raterParticipantIdKey].isin(valid_raters)]
ratings = filter_notes(ratings)
ratings = filter_raters(ratings)
ratings = filter_notes(ratings)
if log:
# Log final details
unique_notes = ratings[c.noteIdKey].nunique()
unique_raters = ratings[c.raterParticipantIdKey].nunique()
logger.info(
f"After applying min {minNumRatingsPerRater} ratings per rater and min {minNumRatersPerNote} raters per note: \n"
+ f"Num Ratings: {len(ratings)}, Num Unique Notes Rated: {unique_notes}, Num Unique Raters: {unique_raters}"
)
return ratings
def write_prescoring_output(
prescoringNoteModelOutput: pd.DataFrame,
prescoringRaterModelOutput: pd.DataFrame,
noteTopicClassifier: Pipeline,
pflipClassifier: PFlipModel,
prescoringMetaOutput: c.PrescoringMetaOutput,
prescoringScoredNotesOutput: Optional[pd.DataFrame],
noteModelOutputPath: str,
raterModelOutputPath: str,
noteTopicClassifierPath: str,
pflipClassifierPath: str,
prescoringMetaOutputPath: str,
prescoringScoredNotesOutputPath: Optional[str],
headers: bool = True,
):
prescoringNoteModelOutput = prescoringNoteModelOutput[c.prescoringNoteModelOutputTSVColumns]
assert all(prescoringNoteModelOutput.columns == c.prescoringNoteModelOutputTSVColumns)
write_tsv_local(prescoringNoteModelOutput, noteModelOutputPath, headers=headers)
prescoringRaterModelOutput = prescoringRaterModelOutput[c.prescoringRaterModelOutputTSVColumns]
assert all(prescoringRaterModelOutput.columns == c.prescoringRaterModelOutputTSVColumns)
write_tsv_local(prescoringRaterModelOutput, raterModelOutputPath, headers=headers)
if prescoringScoredNotesOutput is not None and prescoringScoredNotesOutputPath is not None:
write_tsv_local(prescoringScoredNotesOutput, prescoringScoredNotesOutputPath, headers=headers)
joblib.dump(noteTopicClassifier, noteTopicClassifierPath)
with open(pflipClassifierPath, "wb") as handle:
handle.write(pflipClassifier.serialize())
joblib.dump(prescoringMetaOutput, prescoringMetaOutputPath)
def write_tsv_local(df: pd.DataFrame, path: str, headers: bool = True) -> None:
"""Write DF as a TSV stored to local disk.
Note that index=False (so the index column will not be written to disk), and header=True
(so the first line of the output will contain row names).
Args:
df: pd.DataFrame to write to disk.
path: location of file on disk.
"""
assert path is not None
assert df.to_csv(path, index=False, header=headers, sep="\t") is None
def write_parquet_local(
df: pd.DataFrame, path: str, compression: str = "snappy", engine: str = "pyarrow"
) -> None:
"""Write DF as a parquet file stored to local disk. Compress with snappy
and use pyarrow engine.
Args:
df: pd.DataFrame to write to disk.
path: location of file on disk.
compression: compression algorithm to use. Defaults to 'snappy'.
engine: engine to use. Defaults to 'pyarrow'.
"""
assert path is not None
df.to_parquet(path, compression=compression, engine=engine)
class CommunityNotesDataLoader(ABC):
"""Base class which local and prod data loaders extend.
The DataLoader base class stores necessary files and defines "get_data" function which can be passed to
parallel scoring
"""
def __init__(self) -> None:
"""Configure a new CommunityNotesDataLoader object.
Args:
local (bool, optional): if not None, seed value to ensure deterministic execution
"""
@abstractmethod
def get_data(self) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame]:
"""Returns notes, ratings, noteStatusHistory, and userEnrollment DataFrames"""
@abstractmethod
def get_prescoring_model_output(self) -> pd.DataFrame:
"""Returns first round rater model output."""
class LocalDataLoader(CommunityNotesDataLoader):
def __init__(
self,
notesPath: str,
ratingsPath: str,
noteStatusHistoryPath: str,
userEnrollmentPath: str,
headers: bool,
shouldFilterNotMisleadingNotes: bool = True,
log: bool = True,
prescoringNoteModelOutputPath: Optional[str] = None,
prescoringRaterModelOutputPath: Optional[str] = None,
prescoringNoteTopicClassifierPath: Optional[str] = None,
prescoringPflipClassifierPath: Optional[str] = None,
prescoringMetaOutputPath: Optional[str] = None,
) -> None:
"""
Args:
notesPath (str): file path
ratingsPath (str): file path
noteStatusHistoryPath (str): file path
userEnrollmentPath (str): file path
headers: If true, expect first row of input files to be headers.
shouldFilterNotMisleadingNotes (bool, optional): Throw out not-misleading notes if True. Defaults to True.
log (bool, optional): Print out debug output. Defaults to True.
"""
self.notesPath = notesPath
self.ratingsPath = ratingsPath
self.noteStatusHistoryPath = noteStatusHistoryPath
self.userEnrollmentPath = userEnrollmentPath
self.prescoringNoteModelOutputPath = prescoringNoteModelOutputPath
self.prescoringRaterModelOutputPath = prescoringRaterModelOutputPath
self.prescoringNoteTopicClassifierPath = prescoringNoteTopicClassifierPath
self.prescoringPflipClassifierPath = prescoringPflipClassifierPath
self.prescoringMetaOutputPath = prescoringMetaOutputPath
self.headers = headers
self.shouldFilterNotMisleadingNotes = shouldFilterNotMisleadingNotes
self.log = log
def get_data(self) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame]:
"""All-in-one function for reading Birdwatch notes and ratings from TSV files.
It does both reading and pre-processing.
Returns:
Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame]: notes, ratings, noteStatusHistory, userEnrollment
"""
notes, ratings, noteStatusHistory, userEnrollment = read_from_tsv(
self.notesPath,
self.ratingsPath,
self.noteStatusHistoryPath,
self.userEnrollmentPath,
self.headers,
)
notes, ratings, noteStatusHistory = preprocess_data(
notes, ratings, noteStatusHistory, self.shouldFilterNotMisleadingNotes, self.log
)
return notes, ratings, noteStatusHistory, userEnrollment
def get_prescoring_model_output(
self,
) -> Tuple[pd.DataFrame, pd.DataFrame, Pipeline, PFlipModel, c.PrescoringMetaOutput]:
logger.info(
f"Attempting to read prescoring model output from {self.prescoringNoteModelOutputPath}, {self.prescoringRaterModelOutputPath}, {self.prescoringNoteTopicClassifierPath}, {self.prescoringMetaOutputPath}"
)
if self.prescoringRaterModelOutputPath is None:
prescoringRaterModelOutput = None
else:
prescoringRaterModelOutput = tsv_reader(
self.prescoringRaterModelOutputPath,
c.prescoringRaterModelOutputTSVTypeMapping,
c.prescoringRaterModelOutputTSVColumns,
header=self.headers,
)
assert len(prescoringRaterModelOutput.columns) == len(
c.prescoringRaterModelOutputTSVColumns
) and all(prescoringRaterModelOutput.columns == c.prescoringRaterModelOutputTSVColumns), (
f"Rater model output columns don't match: \n{[col for col in prescoringRaterModelOutput.columns if not col in c.prescoringRaterModelOutputTSVColumns]} are extra columns, "
+ f"\n{[col for col in c.prescoringRaterModelOutputTSVColumns if not col in prescoringRaterModelOutput.columns]} are missing."
) # ensure constants file is up to date.
if self.prescoringNoteModelOutputPath is None:
prescoringNoteModelOutput = None
else:
prescoringNoteModelOutput = tsv_reader(
self.prescoringNoteModelOutputPath,
c.prescoringNoteModelOutputTSVTypeMapping,
c.prescoringNoteModelOutputTSVColumns,
header=self.headers,
)
assert len(prescoringNoteModelOutput.columns) == len(
c.prescoringNoteModelOutputTSVColumns
) and all(prescoringNoteModelOutput.columns == c.prescoringNoteModelOutputTSVColumns), (
f"Note model output columns don't match: \n{[col for col in prescoringNoteModelOutput.columns if not col in c.prescoringNoteModelOutputTSVColumns]} are extra columns, "
+ f"\n{[col for col in c.prescoringNoteModelOutputTSVColumns if not col in prescoringNoteModelOutput.columns]} are missing."
) # ensure constants file is up to date.
if self.prescoringNoteTopicClassifierPath is None:
prescoringNoteTopicClassifier = None
else:
prescoringNoteTopicClassifier = joblib.load(self.prescoringNoteTopicClassifierPath)
assert type(prescoringNoteTopicClassifier) == Pipeline
if self.prescoringPflipClassifierPath is None:
prescoringPflipClassifier = None
else:
prescoringPflipClassifier = joblib.load(self.prescoringPflipClassifierPath)
assert type(prescoringPflipClassifier) == PFlipModel
if self.prescoringMetaOutputPath is None:
prescoringMetaOutput = None
else:
prescoringMetaOutput = joblib.load(self.prescoringMetaOutputPath)
assert type(prescoringMetaOutput) == c.PrescoringMetaOutput
return (
prescoringNoteModelOutput,
prescoringRaterModelOutput,
prescoringNoteTopicClassifier,
prescoringPflipClassifier,
prescoringMetaOutput,
)
def filter_input_data_for_testing(
notes: pd.DataFrame,
ratings: pd.DataFrame,
noteStatusHistory: pd.DataFrame,
cutoffTimestampMillis: Optional[int] = None,
excludeRatingsAfterANoteGotFirstStatusPlusNHours: Optional[int] = None,
daysInPastToApplyPostFirstStatusFiltering: Optional[int] = 14,
filterPrescoringInputToSimulateDelayInHours: Optional[int] = None,
) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame]:
"""
Args:
cutoffTimestampMillis: filter all notes and ratings after this time.
excludeRatingsAfterANoteGotFirstStatusPlusNHours: set to 0 to throw out all
ratings after a note was first CRH. Set to None to turn off.
daysInPastToApplyPostFirstStatusFiltering: only apply the previous
filter to notes created in the last this-many days.
filterPrescoringInputToSimulateDelayInHours: Optional[int]: for system tests,
simulate final scoring running this many hours after prescoring.
Returns: notes, ratings, prescoringNotesInput, prescoringRatingsInput
"""
logger.info(
f"""Called filter_input_data_for_testing.
Notes: {len(notes)}, Ratings: {len(ratings)}. Max note createdAt: {pd.to_datetime(notes[c.createdAtMillisKey].max(), unit='ms')}; Max rating createAt: {pd.to_datetime(ratings[c.createdAtMillisKey].max(), unit='ms')}"""
)
notes, ratings = filter_notes_and_ratings_after_particular_timestamp_millis(
notes, ratings, cutoffTimestampMillis
)
logger.info(
f"""After filtering notes and ratings after particular timestamp (={cutoffTimestampMillis}).
Notes: {len(notes)}, Ratings: {len(ratings)}. Max note createdAt: {pd.to_datetime(notes[c.createdAtMillisKey].max(), unit='ms')}; Max rating createAt: {pd.to_datetime(ratings[c.createdAtMillisKey].max(), unit='ms')}"""
)
ratings = filter_ratings_after_first_status_plus_n_hours(
ratings,
noteStatusHistory,
excludeRatingsAfterANoteGotFirstStatusPlusNHours,
daysInPastToApplyPostFirstStatusFiltering,
)
logger.info(
f"""After filtering ratings after first status (plus {excludeRatingsAfterANoteGotFirstStatusPlusNHours} hours) for notes created in last {daysInPastToApplyPostFirstStatusFiltering} days.
Notes: {len(notes)}, Ratings: {len(ratings)}. Max note createdAt: {pd.to_datetime(notes[c.createdAtMillisKey].max(), unit='ms')}; Max rating createAt: {pd.to_datetime(ratings[c.createdAtMillisKey].max(), unit='ms')}"""
)
(
prescoringNotesInput,
prescoringRatingsInput,
) = filter_prescoring_input_to_simulate_delay_in_hours(
notes, ratings, filterPrescoringInputToSimulateDelayInHours
)
logger.info(
f"""After filtering prescoring notes and ratings to simulate a delay of {filterPrescoringInputToSimulateDelayInHours} hours:
Notes: {len(prescoringNotesInput)}, Ratings: {len(prescoringRatingsInput)}. Max note createdAt: {pd.to_datetime(prescoringNotesInput[c.createdAtMillisKey].max(), unit='ms')}; Max rating createAt: {pd.to_datetime(prescoringRatingsInput[c.createdAtMillisKey].max(), unit='ms')}"""
)
return notes, ratings, prescoringNotesInput, prescoringRatingsInput
def filter_ratings_after_first_status_plus_n_hours(
ratings: pd.DataFrame,
noteStatusHistory: pd.DataFrame,
excludeRatingsAfterANoteGotFirstStatusPlusNHours: Optional[int] = None,
daysInPastToApplyPostFirstStatusFiltering: Optional[int] = 14,
) -> pd.DataFrame:
if excludeRatingsAfterANoteGotFirstStatusPlusNHours is None:
return ratings
if daysInPastToApplyPostFirstStatusFiltering is None:
daysInPastToApplyPostFirstStatusFiltering = 14
ratingCutoffTimeMillisKey = "ratingCutoffTimeMillis"
# First: determine out which notes to apply this to (created in past
# daysInPastToApplyPostFirstStatusFiltering days)
millisToLookBack = daysInPastToApplyPostFirstStatusFiltering * 24 * 60 * 60 * 1000
cutoffTimeMillis = noteStatusHistory[c.createdAtMillisKey].max() - millisToLookBack
nshToFilter = noteStatusHistory[noteStatusHistory[c.createdAtMillisKey] > cutoffTimeMillis]
logger.info(
f" Notes to apply the post-first-status filter for (from last {daysInPastToApplyPostFirstStatusFiltering} days): {len(nshToFilter)}"
)
nshToFilter[ratingCutoffTimeMillisKey] = nshToFilter[
c.timestampMillisOfNoteFirstNonNMRLabelKey
] + (excludeRatingsAfterANoteGotFirstStatusPlusNHours * 60 * 60 * 1000)
# Next: join their firstStatusTime from NSH with their ratings
ratingsWithNSH = ratings.merge(
nshToFilter[[c.noteIdKey, ratingCutoffTimeMillisKey]], on=c.noteIdKey, how="left"
)
# And then filter out ratings made after that time. Don't filter any ratings for notes with
# nan cutoff time.
ratingsWithNSH[ratingCutoffTimeMillisKey].fillna(
ratingsWithNSH[c.createdAtMillisKey].max() + 1, inplace=True
)
ratingsWithNSH = ratingsWithNSH[
ratingsWithNSH[c.createdAtMillisKey] < ratingsWithNSH[ratingCutoffTimeMillisKey]
]
return ratingsWithNSH.drop(columns=[ratingCutoffTimeMillisKey])
def filter_notes_and_ratings_after_particular_timestamp_millis(
notes: pd.DataFrame,
ratings: pd.DataFrame,
cutoffTimestampMillis: Optional[int],
) -> Tuple[pd.DataFrame, pd.DataFrame]:
if cutoffTimestampMillis is not None:
notes = notes[notes[c.createdAtMillisKey] <= cutoffTimestampMillis].copy()
ratings = ratings[ratings[c.createdAtMillisKey] <= cutoffTimestampMillis].copy()
return notes, ratings
def filter_prescoring_input_to_simulate_delay_in_hours(
notes: pd.DataFrame,
ratings: pd.DataFrame,
filterPrescoringInputToSimulateDelayInHours: Optional[int],
) -> Tuple[pd.DataFrame, pd.DataFrame]:
if filterPrescoringInputToSimulateDelayInHours is not None:
latestRatingMillis = ratings[c.createdAtMillisKey].max()
cutoffMillis = latestRatingMillis - (
filterPrescoringInputToSimulateDelayInHours * 60 * 60 * 1000
)
logger.info(
f"""
Filtering input data for prescoring to simulate running prescoring earlier than final scoring.
Latest rating timestamp: {pd.to_datetime(latestRatingMillis, unit='ms')}
Cutoff timestamp: {pd.to_datetime(cutoffMillis, unit='ms')} ({filterPrescoringInputToSimulateDelayInHours} hours before)
"""
)
prescoringNotesInput = notes[notes[c.createdAtMillisKey] < cutoffMillis].copy()
prescoringRatingsInput = ratings[ratings[c.createdAtMillisKey] < cutoffMillis].copy()
else:
prescoringNotesInput = notes
prescoringRatingsInput = ratings
return prescoringNotesInput, prescoringRatingsInput