def sample_t_last()

in agents/diffusion.py [0:0]


    def sample_t_last(self, state):
        batch_size = state.shape[0]
        shape = (batch_size, self.action_dim)
        device = self.betas.device

        x = torch.randn(shape, device=device)
        cur_T = np.random.randint(int(self.n_timesteps * 0.8), self.n_timesteps)
        for i in reversed(range(0, cur_T)):
            timesteps = torch.full((batch_size,), i, device=device, dtype=torch.long)
            if i != 0:
                with torch.no_grad():
                    x = self.p_sample(x, timesteps, state)
            else:
                x = self.p_sample(x, timesteps, state)

        action = x
        return action.clamp_(-self.max_action, self.max_action)