def sample()

in agents/bc_w.py [0:0]


    def sample(self,
               state,
               reparameterize=False,
               deterministic=False):

        h = self.base_fc(state)
        mean = self.last_fc_mean(h)
        std = self.last_fc_log_std(h).clamp(LOG_SIG_MIN, LOG_SIG_MAX).exp()

        if deterministic:
            action = torch.tanh(mean) * self.max_action
        else:
            tanh_normal = TanhNormal(mean, std, self.device)
            if reparameterize:
                action = tanh_normal.rsample()
            else:
                action = tanh_normal.sample()
            action = action * self.max_action

        return action