def forward()

in agents/bc_kl.py [0:0]


    def forward(self, state, action):
        z = F.relu(self.e1(torch.cat([state, action], 1)))
        z = F.relu(self.e2(z))

        mean = self.mean(z)
        # Clamped for numerical stability
        log_std = self.log_std(z).clamp(-4, 15)
        std = torch.exp(log_std)
        z = mean + std * torch.randn_like(std)

        u = self.decode(state, z)

        return u, mean, std