agents/adw_bc_diffusion.py (116 lines of code) (raw):

# Copyright 2022 Twitter, Inc. # SPDX-License-Identifier: Apache-2.0 import copy import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from utils.logger import logger from agents.diffusion import Diffusion from agents.model import MLP_Unet, MLP, Tanh_MLP def expectile_reg_loss(diff, quantile=0.7): weight = torch.where(diff > 0, quantile, (1 - quantile)) return weight * (diff ** 2) class Critic(nn.Module): def __init__(self, state_dim, action_dim, hidden_dim=256): super(Critic, self).__init__() self.q1_model = nn.Sequential(nn.Linear(state_dim + action_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 1)) self.q2_model = nn.Sequential(nn.Linear(state_dim + action_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 1)) def forward(self, state, action): x = torch.cat([state, action], dim=-1) return self.q1_model(x), self.q2_model(x) def q1(self, state, action): x = torch.cat([state, action], dim=-1) return self.q1_model(x) class Value(nn.Module): def __init__(self, state_dim): super(Value, self).__init__() hidden_dim = 256 self.model = nn.Sequential(nn.Linear(state_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 1)) def forward(self, state): return self.model(state) class ADW_BC(object): def __init__(self, state_dim, action_dim, max_action, device, discount, tau, model_type='MLP', beta_schedule='linear', n_timesteps=100, quantile=0.7, temp=3.0, lr=3e-4, ): if model_type == 'MLP': self.model = MLP(state_dim=state_dim, action_dim=action_dim, device=device) elif model_type == 'MLP_Unet': self.model = MLP_Unet(state_dim=state_dim, action_dim=action_dim, device=device) elif model_type == 'Tanh_MLP': self.model = Tanh_MLP(state_dim=state_dim, action_dim=action_dim, max_action=max_action, device=device) self.actor = Diffusion(state_dim=state_dim, action_dim=action_dim, model=self.model, max_action=max_action, beta_schedule=beta_schedule, n_timesteps=n_timesteps, ).to(device) self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=lr) self.value_fun = Value(state_dim).to(device) self.value_optimizer = torch.optim.Adam(self.value_fun.parameters(), lr=lr) self.critic = Critic(state_dim, action_dim).to(device) self.critic_target = copy.deepcopy(self.critic) self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=lr) self.max_action = max_action self.action_dim = action_dim self.discount = discount self.tau = tau self.device = device self.quantile = quantile self.temp = temp def train(self, replay_buffer, iterations, batch_size=100): for it in range(iterations): # Sample replay buffer / batch state, action, next_state, reward, not_done = replay_buffer.sample(batch_size) # Value Function Training with torch.no_grad(): q1, q2 = self.critic_target(state, action) q = torch.min(q1, q2) # Clipped Double Q-learning v = self.value_fun(state) value_loss = expectile_reg_loss(q - v, self.quantile).mean() self.value_optimizer.zero_grad() value_loss.backward() self.value_optimizer.step() # Critic Training current_q1, current_q2 = self.critic(state, action) target_q = (reward + not_done * self.discount * self.value_fun(next_state)).detach() critic_loss = F.mse_loss(current_q1, target_q) + F.mse_loss(current_q2, target_q) self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() # Policy Training v = self.value_fun(state) weight = torch.exp((q - v) / q.abs().mean() * self.temp).clamp_max(100.0).detach() loss = self.actor.loss(action, state, weight) self.actor_optimizer.zero_grad() loss.backward() self.actor_optimizer.step() # Update Target Networks for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) # Logging logger.record_tabular('ADW_BC Loss', loss.item()) logger.record_tabular('Critic Loss', critic_loss.item()) def sample_action(self, state): state = torch.FloatTensor(state.reshape(1, -1)).to(self.device) with torch.no_grad(): action = self.actor.sample(state) return action.cpu().data.numpy().flatten() def save_model(self, dir): torch.save(self.actor.state_dict(), f'{dir}/actor.pth') torch.save(self.critic.state_dict(), f'{dir}/critic.pth') def load_model(self, dir): self.actor.load_state_dict(torch.load(f'{dir}/actor.pth')) self.critic.load_state_dict(torch.load(f'{dir}/critic.pth'))