agents/adw_bc_diffusion.py (116 lines of code) (raw):
# Copyright 2022 Twitter, Inc.
# SPDX-License-Identifier: Apache-2.0
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils.logger import logger
from agents.diffusion import Diffusion
from agents.model import MLP_Unet, MLP, Tanh_MLP
def expectile_reg_loss(diff, quantile=0.7):
weight = torch.where(diff > 0, quantile, (1 - quantile))
return weight * (diff ** 2)
class Critic(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim=256):
super(Critic, self).__init__()
self.q1_model = nn.Sequential(nn.Linear(state_dim + action_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1))
self.q2_model = nn.Sequential(nn.Linear(state_dim + action_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1))
def forward(self, state, action):
x = torch.cat([state, action], dim=-1)
return self.q1_model(x), self.q2_model(x)
def q1(self, state, action):
x = torch.cat([state, action], dim=-1)
return self.q1_model(x)
class Value(nn.Module):
def __init__(self, state_dim):
super(Value, self).__init__()
hidden_dim = 256
self.model = nn.Sequential(nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1))
def forward(self, state):
return self.model(state)
class ADW_BC(object):
def __init__(self,
state_dim,
action_dim,
max_action,
device,
discount,
tau,
model_type='MLP',
beta_schedule='linear',
n_timesteps=100,
quantile=0.7,
temp=3.0,
lr=3e-4,
):
if model_type == 'MLP':
self.model = MLP(state_dim=state_dim, action_dim=action_dim, device=device)
elif model_type == 'MLP_Unet':
self.model = MLP_Unet(state_dim=state_dim, action_dim=action_dim, device=device)
elif model_type == 'Tanh_MLP':
self.model = Tanh_MLP(state_dim=state_dim, action_dim=action_dim, max_action=max_action, device=device)
self.actor = Diffusion(state_dim=state_dim, action_dim=action_dim, model=self.model, max_action=max_action,
beta_schedule=beta_schedule, n_timesteps=n_timesteps,
).to(device)
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=lr)
self.value_fun = Value(state_dim).to(device)
self.value_optimizer = torch.optim.Adam(self.value_fun.parameters(), lr=lr)
self.critic = Critic(state_dim, action_dim).to(device)
self.critic_target = copy.deepcopy(self.critic)
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=lr)
self.max_action = max_action
self.action_dim = action_dim
self.discount = discount
self.tau = tau
self.device = device
self.quantile = quantile
self.temp = temp
def train(self, replay_buffer, iterations, batch_size=100):
for it in range(iterations):
# Sample replay buffer / batch
state, action, next_state, reward, not_done = replay_buffer.sample(batch_size)
# Value Function Training
with torch.no_grad():
q1, q2 = self.critic_target(state, action)
q = torch.min(q1, q2) # Clipped Double Q-learning
v = self.value_fun(state)
value_loss = expectile_reg_loss(q - v, self.quantile).mean()
self.value_optimizer.zero_grad()
value_loss.backward()
self.value_optimizer.step()
# Critic Training
current_q1, current_q2 = self.critic(state, action)
target_q = (reward + not_done * self.discount * self.value_fun(next_state)).detach()
critic_loss = F.mse_loss(current_q1, target_q) + F.mse_loss(current_q2, target_q)
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Policy Training
v = self.value_fun(state)
weight = torch.exp((q - v) / q.abs().mean() * self.temp).clamp_max(100.0).detach()
loss = self.actor.loss(action, state, weight)
self.actor_optimizer.zero_grad()
loss.backward()
self.actor_optimizer.step()
# Update Target Networks
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
# Logging
logger.record_tabular('ADW_BC Loss', loss.item())
logger.record_tabular('Critic Loss', critic_loss.item())
def sample_action(self, state):
state = torch.FloatTensor(state.reshape(1, -1)).to(self.device)
with torch.no_grad():
action = self.actor.sample(state)
return action.cpu().data.numpy().flatten()
def save_model(self, dir):
torch.save(self.actor.state_dict(), f'{dir}/actor.pth')
torch.save(self.critic.state_dict(), f'{dir}/critic.pth')
def load_model(self, dir):
self.actor.load_state_dict(torch.load(f'{dir}/actor.pth'))
self.critic.load_state_dict(torch.load(f'{dir}/critic.pth'))