agents/bc_cvae.py (77 lines of code) (raw):
# Copyright 2022 Twitter, Inc.
# SPDX-License-Identifier: Apache-2.0
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils.logger import logger
from torch.distributions import Distribution, Normal
LOG_SIG_MAX = 2
LOG_SIG_MIN = -20
# Vanilla Variational Auto-Encoder
class VAE(nn.Module):
def __init__(self, state_dim, action_dim, latent_dim, max_action, device, hidden_dim=256):
super(VAE, self).__init__()
self.e1 = nn.Linear(state_dim + action_dim, hidden_dim)
self.e2 = nn.Linear(hidden_dim, hidden_dim)
self.mean = nn.Linear(hidden_dim, latent_dim)
self.log_std = nn.Linear(hidden_dim, latent_dim)
self.d1 = nn.Linear(state_dim + latent_dim, hidden_dim)
self.d2 = nn.Linear(hidden_dim, hidden_dim)
self.d3 = nn.Linear(hidden_dim, action_dim)
self.max_action = max_action
self.latent_dim = latent_dim
self.device = device
def forward(self, state, action):
z = F.relu(self.e1(torch.cat([state, action], 1)))
z = F.relu(self.e2(z))
mean = self.mean(z)
# Clamped for numerical stability
log_std = self.log_std(z).clamp(-4, 15)
std = torch.exp(log_std)
z = mean + std * torch.randn_like(std)
u = self.decode(state, z)
return u, mean, std
def decode(self, state, z=None):
# When sampling from the VAE, the latent vector is clipped to [-0.5, 0.5]
if z is None:
z = torch.randn((state.shape[0], self.latent_dim)).to(self.device).clamp(-0.5, 0.5)
a = F.relu(self.d1(torch.cat([state, z], 1)))
a = F.relu(self.d2(a))
return self.max_action * torch.tanh(self.d3(a))
def sample(self, state):
return self.decode(state)
class BC_CVAE(object):
def __init__(self,
state_dim,
action_dim,
max_action,
device,
discount,
tau,
lr=3e-4,
):
latent_dim = action_dim * 2
self.vae = VAE(state_dim, action_dim, latent_dim, max_action, device).to(device)
self.vae_optimizer = torch.optim.Adam(self.vae.parameters(), lr=lr)
self.max_action = max_action
self.action_dim = action_dim
self.discount = discount
self.tau = tau
self.device = device
def sample_action(self, state):
with torch.no_grad():
state = torch.FloatTensor(state.reshape(1, -1)).to(self.device)
action = self.vae.sample(state)
return action.cpu().data.numpy().flatten()
def train(self, replay_buffer, iterations, batch_size=100):
for it in range(iterations):
# Sample replay buffer / batch
state, action, next_state, reward, not_done = replay_buffer.sample(batch_size)
# Variational Auto-Encoder Training
recon, mean, std = self.vae(state, action)
recon_loss = F.mse_loss(recon, action)
KL_loss = -0.5 * (1 + torch.log(std.pow(2)) - mean.pow(2) - std.pow(2)).mean()
vae_loss = recon_loss + 0.5 * KL_loss
self.vae_optimizer.zero_grad()
vae_loss.backward()
self.vae_optimizer.step()
logger.record_tabular('VAE Loss', vae_loss.cpu().data.numpy())
def save_model(self, dir):
torch.save(self.vae.state_dict(), f'{dir}/vae.pth')
def load_model(self, dir):
self.vae.load_state_dict(torch.load(f'{dir}/vae.pth'))