def call()

in projects/home/recap/data/preprocessors.py [0:0]


  def call(self, inputs, training=None, mask=None):
    outputs = tf.nest.pack_sequence_as(inputs, tf.nest.flatten(inputs))
    for feature, type_str in self.config.features.items():
      assert type_str in self._type_map
      if type_str == "bfloat16":
        logging.warning(
          "Although bfloat16 and float32 have the same number of exponent bits, this down casting is not 100% lossless. Please double check metrics."
        )
      down_cast_data_type = self._type_map[type_str]
      outputs[feature] = tf.cast(outputs[feature], dtype=down_cast_data_type)
    return outputs