def __post_init__()

in projects/home/recap/data/dataset.py [0:0]


  def __post_init__(self):
    if self.weights is None:
      self.weights = torch.ones_like(self.labels)
    for feature_name, feature_value in self.as_dict().items():
      if ("embedding" in feature_name) and (feature_value is None):
        setattr(self, feature_name, torch.empty([0, 0]))